SECURE COMMUNICATION INTEROPERABILITY PROTOCOL (SCIP)

The Secure Communication Interoperability Protocol (SCIP) is a communications standard developed by the National Security Agency (NSA) to enable interoperable secure communications among allies and partners around the globe.

The SCIP-210 Signaling Plan is the specification that defines the application layer signaling used to negotiate a secure end-to-end session between two communication devices, independent of network transport. SCIP negotiates the operational mode (e.g., voice, data, etc.), the cryptographic algorithm suite (e.g., Suite A, Suite B, etc), and the traffic encryption key used for each secure session. It also provides capabilities for cryptographic synchronization and operational mode control between communicating end-point devices. SCIP is designed to operate over any network and is currently utilized in devices operating on a wide variety of networks including PSTN, ISDN, CDMA, GSM, IP, and satellite.

Potential developers of SCIP devices may contact the NSA SCIP Program Office at SCIP_POC@missi.ncsc.mil for further information. The SCIP-210 Signaling Plan is available without restrictions on its use for the development, manufacture, and sale of SCIP products. Compliance and interoperability testing will be necessary to ensure secure interoperability between the wide variety of current and future SCIP products.
SCIP
Signaling Plan

Revision 3.2

December 19, 2007

Prepared for:
National Security Agency
9800 Savage Road
Fort George G. Meade, MD 20755

Prepared By:
GENERAL DYNAMICS
C4 Systems
77 “A” Street
Needham, MA 02494
TABLE OF CONTENTS

1.0 INTRODUCTION ..1

1.1 Purpose..2

1.2 Scope...3

1.3 Definitions ..4

1.4 Acronyms and Abbreviations ...5

1.5 Applicable Documents..7

1.5.1 NSA Documents ..7

1.5.2 Industry Standards ..8

1.5.3 International and National Standards ...8

1.5.4 Federal and DoD Standards ..9

1.5.5 NATO Standards ...9

1.5.6 Other Relevant Technical Papers ...9

1.6 Signaling Plan Overview ..10

1.6.1 SCIP Application State Diagram ..10

1.6.2 SCIP Protocol Layer Diagram ..12

1.7 Document Conventions...13

2.0 SCIP SIGNALING – Point-to-Point Operation ..15

2.1 SCIP Message Transport ...15

2.1.1 The MER-OC Message Transport Option and the Branch Point Mechanism15

2.1.2 Message Transport Timelines ...16

2.1.3 Transport Framing ..19

2.1.3.1 Start of Message ..21

2.1.3.2 Frame Count ...21

2.1.3.3 Cyclic Redundancy Check ...21

2.1.3.4 Forward Error Control ..22

2.1.3.5 End of Message ..23

2.1.4 Escape ..23

2.1.5 Transport Layer Control Messages ..25

2.1.5.1 REPORT Message ..25

2.1.5.1.1 REPORT Message Format ..26

2.1.5.1.2 Conditions for REPORT Message Transmission ...27

2.1.5.1.3 Processing for REPORT Message Reception ...28

2.1.6 Message Transmission ..29

2.1.6.1 Transmit Request ...29

2.1.6.2 Transmitter Actions on Receipt of a REPORT ...33

2.1.6.3 Retransmit Timeout ..33

2.1.7 Message Reception ..34

2.1.8 Octet Alignment ...37

2.2 SCIP Call Setup Signaling ..38

2.2.1 Introduction and Overview ..38

2.2.1.1 Secure Call Setup Signaling Time Line ..38

2.2.1.1.1 FIREFLY Example ..38

2.2.1.1.2 PPK Example ...40
TABLE OF CONTENTS (Cont.)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1.2</td>
<td>First Message Time-Out</td>
<td>42</td>
</tr>
<tr>
<td>2.2.1.3</td>
<td>Unrecognized Messages</td>
<td>43</td>
</tr>
<tr>
<td>2.2.1.4</td>
<td>Message Limitations</td>
<td>43</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Capabilities Message</td>
<td>43</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Capabilities Message Definition</td>
<td>43</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>Capabilities Message Transmission</td>
<td>56</td>
</tr>
<tr>
<td>2.2.2.3</td>
<td>Capabilities Message Reception</td>
<td>58</td>
</tr>
<tr>
<td>2.2.2.3.1</td>
<td>Capabilities Message Reception Unique Processing</td>
<td>59</td>
</tr>
<tr>
<td>2.2.2.3.2</td>
<td>Common Capabilities Message Processing</td>
<td>60</td>
</tr>
<tr>
<td>2.2.2.4</td>
<td>Extended Keysets List Message Definition</td>
<td>64</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Parameters/Certificate Message</td>
<td>66</td>
</tr>
<tr>
<td>2.2.3.1</td>
<td>Parameters/Certificate Message Definition</td>
<td>66</td>
</tr>
<tr>
<td>2.2.3.2</td>
<td>Parameters/Certificate Message Transmission</td>
<td>69</td>
</tr>
<tr>
<td>2.2.3.3</td>
<td>Parameters/Certificate Message Reception</td>
<td>71</td>
</tr>
<tr>
<td>2.2.4</td>
<td>F(R) Message</td>
<td>76</td>
</tr>
<tr>
<td>2.2.4.1</td>
<td>F(R) Message Definition</td>
<td>76</td>
</tr>
<tr>
<td>2.2.4.2</td>
<td>F(R) Message Transmission</td>
<td>78</td>
</tr>
<tr>
<td>2.2.4.3</td>
<td>F(R) Message Reception</td>
<td>80</td>
</tr>
<tr>
<td>2.2.4.3.1</td>
<td>F(R) Message Received</td>
<td>80</td>
</tr>
<tr>
<td>2.2.4.3.2</td>
<td>Parameters/Certificate Message Received</td>
<td>80</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Cryptosync Exchange</td>
<td>81</td>
</tr>
<tr>
<td>2.2.5.1</td>
<td>Cryptosync Message Definition</td>
<td>82</td>
</tr>
<tr>
<td>2.2.5.2</td>
<td>Cryptosync Message Transmission</td>
<td>83</td>
</tr>
<tr>
<td>2.2.5.3</td>
<td>Cryptosync Message Reception</td>
<td>85</td>
</tr>
<tr>
<td>2.2.5.3.1</td>
<td>Cryptosync Message Received</td>
<td>85</td>
</tr>
<tr>
<td>2.2.5.3.2</td>
<td>Parameters/Certificate Message Received</td>
<td>87</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Operational Mode and Keyset Type Specific Instantiations</td>
<td>87</td>
</tr>
<tr>
<td>2.2.6.1</td>
<td>Key Agreement Specific</td>
<td>87</td>
</tr>
<tr>
<td>2.2.6.1.1</td>
<td>Capabilities and Extended Keysets List Messages</td>
<td>87</td>
</tr>
<tr>
<td>2.2.6.1.1.1</td>
<td>Type 1 FIREFLY Without CSE</td>
<td>87</td>
</tr>
<tr>
<td>2.2.6.1.1.2</td>
<td>Type 1 FIREFLY With CSE</td>
<td>88</td>
</tr>
<tr>
<td>2.2.6.1.1.3</td>
<td>Type 1 U.S. Generic PPK Without CSE</td>
<td>90</td>
</tr>
<tr>
<td>2.2.6.1.1.4</td>
<td>ECMQV/AES Without CSE – Phase 1</td>
<td>90</td>
</tr>
<tr>
<td>2.2.6.1.1.5</td>
<td>ECMQV/AES With CSE – Phase 1</td>
<td>91</td>
</tr>
<tr>
<td>2.2.6.1.1.6</td>
<td>NATO ECMQV/AES Without CSE</td>
<td>91</td>
</tr>
<tr>
<td>2.2.6.1.1.7</td>
<td>NATO ECMQV/AES With CSE</td>
<td>92</td>
</tr>
<tr>
<td>2.2.6.1.1.8</td>
<td>NATO PPK/AES Without CSE</td>
<td>94</td>
</tr>
<tr>
<td>2.2.6.1.1.9</td>
<td>Extended Keysets List Support</td>
<td>94</td>
</tr>
<tr>
<td>2.2.6.1.2</td>
<td>Parameters/Certificate Message</td>
<td>95</td>
</tr>
<tr>
<td>2.2.6.1.2.1</td>
<td>Type 1 FIREFLY</td>
<td>95</td>
</tr>
<tr>
<td>2.2.6.1.2.2</td>
<td>Type 1 U.S. Generic PPK</td>
<td>95</td>
</tr>
<tr>
<td>2.2.6.1.2.3</td>
<td>ECMQV/AES – Phase 1</td>
<td>95</td>
</tr>
<tr>
<td>2.2.6.1.2.4</td>
<td>NATO ECMQV/AES</td>
<td>96</td>
</tr>
<tr>
<td>2.2.6.1.2.5</td>
<td>NATO PPK/AES</td>
<td>96</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Cont.)

2.2.6.1.3 F(R) Message ...96
 2.2.6.1.3.1 Type 1 FIREFLY ..97
 2.2.6.1.3.2 Type 1 U.S. Generic PPK ...97
 2.2.6.1.3.3 ECMQV/AES – Phase 1 ..97
 2.2.6.1.3.4 NATO ECMQV/AES ...97
 2.2.6.1.3.5 NATO PPK/AES ..97

2.2.6.2 Secure Voice Specifics ...98
 2.2.6.2.1 Secure MELP and Secure G.729D Voice Options100
 2.2.6.2.2 Secure AMBE Voice Specific Option100

2.2.6.3 Secure Data Specifics ...100
 2.2.6.3.1 Secure Data Operational Mode Parameters101
 2.2.6.3.2 Enhanced Secure Data Operational Mode Parameters 103

2.2.6.4 Secure Electronic Rekey Specifics ..104

2.2.6.5 Clear MELP Voice Specifics..105

2.3 SCIP Call Control Signaling...106
 2.3.1 Call Control Timelines...106
 2.3.2 Notification Message Processing..109
 2.3.2.1 Notification Message Definition...110
 2.3.2.2 Notification (Connection Terminate)......................................114
 2.3.2.3 Notification (Native Clear Voice/Connection Idle)...............116
 2.3.2.3.1 Failed Call..119
 2.3.2.3.2 Nonsecure Selected..120
 2.3.2.3.3 Secure Selected ..120
 2.3.2.3.4 Secure Restart ...120
 2.3.2.3.5 Notification (Native Clear Voice/Connection Idle)
 Receive Processing ..121
 2.3.2.4 Notification (CKL Transfer)..121
 2.3.2.5 Notification (Secure Dial)..124
 2.3.2.5.1 Encryption of Secure Dial Characters127
 2.3.2.5.2 Data Transmission and Reception127
 2.3.2.6 Notification (Attention) ...129
 2.3.2.7 Notification (Secure Update) ...131

2.3.3 Mode Change Processing...134
 2.3.3.1 Mode Change Request Message ...134
 2.3.3.2 Mode Change Response Message ..137

2.3.4 Two-Way Resync Processing ...139

2.4 SCIP Signaling Timeouts..142

2.5 SCIP Signaling Constants..144
 2.5.1 Source Definitions ...144
 2.5.2 MIDs ..144
 2.5.3 Miscellaneous SCIP Signaling Constants......................................145
 2.5.3.1 ESCAPE ...145
 2.5.3.2 Start of Message (SOM) and End of Message (EOM)145
 2.5.3.3 START and FILLER...145
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.3.4</td>
<td>Headers</td>
<td>146</td>
</tr>
<tr>
<td>3.0</td>
<td>SCIP USER APPLICATION SIGNALING – Point-to-Point Operation</td>
<td>149</td>
</tr>
<tr>
<td>3.1</td>
<td>SCIP User Applications</td>
<td>149</td>
</tr>
<tr>
<td>3.2</td>
<td>Application Start-up/Restart Signaling</td>
<td>149</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Full Bandwidth Applications</td>
<td>149</td>
</tr>
<tr>
<td>3.2.1.1</td>
<td>Application Timeout</td>
<td>150</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Reliable Transport Applications</td>
<td>152</td>
</tr>
<tr>
<td>3.3</td>
<td>Secure Voice Applications</td>
<td>153</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Secure MELP Voice</td>
<td>153</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>Secure 2400 bps MELP Voice – Blank and Burst</td>
<td>153</td>
</tr>
<tr>
<td>3.3.1.1.1</td>
<td>Sync Management Frame</td>
<td>154</td>
</tr>
<tr>
<td>3.3.1.1.2</td>
<td>Encryption and Transmission Ordering</td>
<td>156</td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>Secure MELP Voice – Burst w/o Blank</td>
<td>158</td>
</tr>
<tr>
<td>3.3.1.2.1</td>
<td>Sync Management Frame</td>
<td>159</td>
</tr>
<tr>
<td>3.3.1.2.2</td>
<td>Encryption and Transmission Ordering</td>
<td>160</td>
</tr>
<tr>
<td>3.3.1.3</td>
<td>Clear MELP Voice – Blank and Burst</td>
<td>162</td>
</tr>
<tr>
<td>3.3.1.3.1</td>
<td>Sync Management Frame</td>
<td>163</td>
</tr>
<tr>
<td>3.3.1.3.2</td>
<td>Transmission Ordering</td>
<td>164</td>
</tr>
<tr>
<td>3.3.1.4</td>
<td>Voice Activity Factor Processing</td>
<td>165</td>
</tr>
<tr>
<td>3.3.1.4.1</td>
<td>Discontinuous Voice Transmission</td>
<td>165</td>
</tr>
<tr>
<td>3.3.1.4.2</td>
<td>Force Continuous Transmission</td>
<td>165</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Secure G.729D Voice</td>
<td>166</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Secure G.729D Voice Frame</td>
<td>168</td>
</tr>
<tr>
<td>3.3.2.1.1</td>
<td>Secure G.729D Voice Transmission Format</td>
<td>168</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Sync Management Frame</td>
<td>169</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>Encrypted Speech Frame Header</td>
<td>170</td>
</tr>
<tr>
<td>3.3.2.4</td>
<td>Encryption and Transmission Ordering</td>
<td>171</td>
</tr>
<tr>
<td>3.3.2.5</td>
<td>Discontinuous Voice Transmission</td>
<td>173</td>
</tr>
<tr>
<td>3.3.2.6</td>
<td>Force Continuous Transmission</td>
<td>173</td>
</tr>
<tr>
<td>3.4</td>
<td>Secure Data Applications</td>
<td>173</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Secure Reliable Transport (RT) Asynchronous Data</td>
<td>173</td>
</tr>
<tr>
<td>3.4.1.1</td>
<td>Secure RT Asynchronous Data Transmission</td>
<td>174</td>
</tr>
<tr>
<td>3.4.1.1.1</td>
<td>Encryption and Transmission Ordering</td>
<td>175</td>
</tr>
<tr>
<td>3.4.1.1.2</td>
<td>Message Transmission</td>
<td>177</td>
</tr>
<tr>
<td>3.4.1.2</td>
<td>Secure RT Asynchronous Data Message Reception</td>
<td>177</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Secure Best Effort Transport (BET) Asynchronous Data</td>
<td>177</td>
</tr>
<tr>
<td>3.4.2.1</td>
<td>Sync Management Frame</td>
<td>180</td>
</tr>
<tr>
<td>3.4.2.2</td>
<td>Encryption and Transmission Ordering</td>
<td>180</td>
</tr>
<tr>
<td>4.0</td>
<td>SCIP ELECTRONIC REKEY SIGNALING</td>
<td>183</td>
</tr>
<tr>
<td>4.1</td>
<td>Electronic Rekey Protocol Architecture and Communication Paths</td>
<td>184</td>
</tr>
<tr>
<td>4.2</td>
<td>SCIP Electronic Rekey Message Transport</td>
<td>186</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Encryption and Transmission Ordering</td>
<td>187</td>
</tr>
<tr>
<td>4.2.2</td>
<td>SCIP Rekey Message Transmission</td>
<td>188</td>
</tr>
<tr>
<td>4.2.3</td>
<td>SCIP Rekey Message Reception</td>
<td>188</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Cont.)

4.3 Adaptation Layer ..189
4.4 Generic Rekey Application Layer ..190
5.0 SCIP SIGNALING – Multipoint Operation ...191
 5.1 Multipoint Message Transport..191
 5.1.1 Multipoint Transport Framing...191
 5.1.1.1 Multipoint Message Transmission...192
 5.1.1.2 Multipoint Message Reception..192
 5.1.2 Multipoint Cryptosync Message...193
 5.1.2.1 Multipoint Cryptosync Message Definition...193
 5.1.2.2 Multipoint Sync Parameters...195
 5.1.2.2.1 Sync Verification Pattern...196
 5.1.3 FILLER – Multipoint Operation...197
 5.1.4 START – Multipoint Operation...197
 5.1.5 End of Transmission – Multipoint Operation..198
 5.2 Multipoint Session ...199
 5.2.1 Multipoint Transmission...200
 5.2.1.1 Multipoint Cryptosync Message Transmission.................................200
 5.2.1.2 Multipoint Secure Traffic Transmission..202
 5.2.1.2.1 Multipoint Secure MELP Voice Transmission...............................202
 5.2.1.2.2 Multipoint Secure G.729D Voice Transmission...........................203
 5.2.1.3 End of Multipoint Secure Traffic Transmission....................................203
 5.2.2 Multipoint Reception ...204
 5.2.2.1 Multipoint Cryptosync Message Reception...204
 5.2.2.2 Multipoint Secure Traffic Reception...204
 5.2.2.2.1 Multipoint Secure MELP Voice Reception.................................204
 5.2.2.2.2 Multipoint Secure G.729D Voice Reception...............................205
 5.2.2.2.3 Multipoint Secure Data Reception..205
 5.2.2.3 Late Entry (Including Re-Entry)...205
 5.2.2.4 End of Multipoint Secure Traffic Reception...206
A.0 SCIP MESSAGE TRANSPORT PROTOCOL EXAMPLES ...A-1
 A.1 Normal Capabilities Message Transfer..A-2
 A.2 Parameters/Certificate Message Transfer with Corrupted and Missing FramesA-4
 A.3 F(R) Message Transfer with Corrupted SOM and EOM Sequences..................A-7
 A.4 CAPABILITIES Message Transfer with Corrupted REPORT Responses..........A-10
 A.5 Normal Transition from Signaling to Full Bandwidth Application....................A-13
 A.6 Transition from Signaling to Full Bandwidth Application with Final REPORT
 Lost ..A-16
 A.7 Transition from Signaling to Full Bandwidth Application with START Lost ...A-20
 A.8 Two Way Resync from Full Bandwidth Application, Terminal A is Leader.....A-24
 A.9 Two Way Resync from Full Bandwidth Application with Corrupted ESC
 Sequence, Terminal A is Leader..A-27
 A.10 Normal Termination from Full Bandwidth Application, Terminal A is Leader.A-30
 A.11 Terminal A Sends Notify(Attention) from Full Bandwidth Application........A-32
TABLE OF CONTENTS (Cont.)

B.0 DISCONTINUOUS VOICE (DTX) .. B-1
 B.1 Voice Activity Detection (VAD) .. B-1
 B.2 Default Voice Activity Detection (VAD) Algorithm ... B-2
 B.3 Grace Period .. B-3
 B.4 Blank Period ... B-4
 B.5 Comfort Noise ... B-5
 B.6 Re-Start ... B-5
C.0 PERFORMANCE .. C-1
 C.1 DTX Voice ... C-1
 C.1.1 MELP Blank and Burst ... C-1
LIST OF FIGURES

Figure 1.6-1 SCIP Application State Diagram - Point-to-Point .. 11
Figure 1.6-2 SCIP Protocol Layer Diagram - Point-to-Point .. 12
Figure 1.7-1 Process Diagram Symbols ... 13
Figure 2.1-1(a) Transport Layer Signaling Time Line (Framed) .. 17
Figure 2.1-1(b) Transport Layer Signaling Time Line (Full bandwidth-to-Framed) 18
Figure 2.1-1(c) Transport Layer Signaling Time Line (Full bandwidth-to-Full bandwidth) 18
Figure 2.1-2 Transmission Frame Group .. 19
Figure 2.1-3 ESCAPE Processing ... 24
Figure 2.1-4(a) Message Transmission ... 31
Figure 2.1-4(b) Message Transmission (Cont.) .. 32
Figure 2.1-5(a) Message Reception .. 35
Figure 2.1-5(b) Message Reception (Cont.) .. 36
Figure 2.2-1(a) FIREFLY Secure Call Setup Signaling Time Line .. 39
Figure 2.2-1(b) PPK Secure Call Setup Signaling Time Line .. 41
Figure 2.2-2 Capabilities Message Transmission .. 57
Figure 2.2-3 Capabilities Message Reception Unique Processing .. 60
Figure 2.2-4 Common Capabilities Message Processing ... 62
Figure 2.2-5 Parameters/Certificate Message Transmission ... 70
Figure 2.2-6(a) Parameters/Certificate Message Reception ... 72
Figure 2.2-6(b) Parameters/Certificate Message Reception (Cont.) 73
Figure 2.2-6(c) Parameters/Certificate Message Reception (Cont.) 74
Figure 2.2-7 F(R) Message Transmission ... 79
Figure 2.2-8 F(R) Message Reception .. 81
Figure 2.2-9 Cryptosync Message Transmission ... 84
Figure 2.2-10 Cryptosync Message Reception ... 86
Figure 2.3-1(a) Notification Message Signaling Time Line (Full Bandwidth to Framed) 107
Figure 2.3-1(b) Notification Message Signaling Time Line (Framed to Framed) 107
Figure 2.3-1(c) Notification Message Signaling Time Line (Full Bandwidth to Full Bandwidth) .. 107
Figure 2.3-1(d) Mode Change Signaling Time Line ... 108
Figure 2.3-1(e) Two-Way Resync Signaling Time Line ... 108
Figure 2.3-2 Notification Message Processing (Connection Terminate) 115
Figure 2.3-3(a) Notification Message Processing (Native Clear Voice/Connection Idle) 117
Figure 2.3-3(b) Notification Message Processing (Native Clear Voice/Connection Idle) (Cont.) .. 118
Figure 2.3-4 Notification Message Receive Processing (CKL Transfer) 124
Figure 2.3-5 Notification Message Processing (Secure Dial) .. 126
Figure 2.3-6 Notification Message Processing (Attention) ... 130
Figure 2.3-7 Notification Message Processing (Secure Update) ... 133
Figure 2.3-8 Mode Change Processing .. 135
Figure 2.3-9 Two-Way Resync Processing ... 140
Figure 3.2-1 Application Timeout Processing ... 151
Figure 3.3-1 Secure MELP Voice Transmission Format – Blank and Burst 154
Figure 3.3-2 Sync Management Frame Format – Blank and Burst .. 154
LIST OF FIGURES (Cont.)

Figure 3.3-3 Secure MELP Voice Transmission Format – Burst w/o Blank 159
Figure 3.3-4 Sync Management Frame Format – Burst w/o Blank ... 159
Figure 3.3-5 Clear MELP Voice Transmission Format ... 163
Figure 3.3-6 Clear MELP Voice Sync Management Frame Format ... 163
Figure 3.3-7 Secure G.729D Voice Transmission ... 166
Figure 3.3-8 Secure G.729D Voice Superframe Details ... 167
Figure 3.3-9 Secure G.729D Voice Escape and Return Example (No Cryptosync) 167
Figure 3.3-10 Secure G.729D Voice Sync Management Frame Format 169
Figure 3.3-11 Secure G.729D Voice Encrypted Speech Frame Header 170
Figure 3.4-1 Secure RT Asynchronous Data Message Preparation 174
Figure 3.4-2 V.14 Asynchronous Data Input Ordering ... 175
Figure 3.4-3 Secure BET Asynchronous Data Transmission Format 178
Figure 3.4-4 Secure BET Asynchronous Data Superframe Structure 179
Figure 3.4-5 Sync Management Frame Format ... 180
Figure 3.4-6 V.14 Asynchronous Data Input Ordering ... 180
Figure 4.1-1 Rekey Protocol Conversion Using the GRFE ... 184
Figure 4.1-2 Electronic Rekey System Infrastructure ... 185
Figure 4.2-1 SCIP Rekey Message Preparation ... 186
Figure 5.1-1 Multipoint Transport Signaling Timeline ... 191
Figure 5.1-2 Multiple Multipoint Cryptosync Message Transmissions 192
Figure 5.2-1 SCIP Multipoint State Diagram .. 197
Figure 5.2-2 Multipoint Secure Voice Transit Signaling Time Line 198
Figure 5.2-3 Multipoint Cryptosync Message Transmission ... 200
Figure 5.2-4 Multipoint MELP Voice Transmission Format – Blank and Burst 202
Figure 5.2-5 End of Multipoint Secure Traffic Transmission .. 203
Figure 5.2-6 Multipoint Cryptosync Message Reception ... 205
Figure 5.2-7 Multipoint Secure Voice Traffic Reception ... 206
Figure 5.2-8 Multipoint Late Entry Cryptographic Synchronization 208
Figure 5.2-9 End of Multipoint Secure Traffic Reception ... 209
Figure B-1 DTX Voice .. B-1
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1-1</td>
<td>Frame Group Format</td>
<td>20</td>
</tr>
<tr>
<td>2.1-2</td>
<td>REPORT Message Data Format</td>
<td>26</td>
</tr>
<tr>
<td>2.1-3(a)</td>
<td>Capabilities Message Format</td>
<td>44</td>
</tr>
<tr>
<td>2.1-3(b)</td>
<td>Capabilities Message Format (Cont.)</td>
<td>45</td>
</tr>
<tr>
<td>2.1-3(c)</td>
<td>Capabilities Message Format – Version 1 or Higher (Cont.)</td>
<td>45</td>
</tr>
<tr>
<td>2.2-1</td>
<td>SCIP Standard Operational Modes</td>
<td>47</td>
</tr>
<tr>
<td>2.2-2(a)</td>
<td>Keysets List Entry - General Format</td>
<td>48</td>
</tr>
<tr>
<td>2.2-2(b)</td>
<td>SCIP Standard Keyset Types</td>
<td>49</td>
</tr>
<tr>
<td>2.2-2(c)</td>
<td>Terminal Priority COI Values</td>
<td>50</td>
</tr>
<tr>
<td>2.2-2(d)</td>
<td>Terminal Priority Values</td>
<td>50</td>
</tr>
<tr>
<td>2.2-2(e)</td>
<td>Example of Capabilities Message Contents – Enhanced FF Capable</td>
<td>52</td>
</tr>
<tr>
<td>2.2-2(f)</td>
<td>Extended Keysets List Message Format</td>
<td>65</td>
</tr>
<tr>
<td>2.2-3(a)</td>
<td>Parameters/Certificate Message Format</td>
<td>67</td>
</tr>
<tr>
<td>2.2-3(b)</td>
<td>F(R) Message - General Format</td>
<td>77</td>
</tr>
<tr>
<td>2.2-3(c)</td>
<td>Cryptosync Message - General Format</td>
<td>82</td>
</tr>
<tr>
<td>2.2-3(d)</td>
<td>Keyset Parameters Entry – Type 1 Basic and Enhanced FF w/o CSE Format</td>
<td>88</td>
</tr>
<tr>
<td>2.2-3(e)</td>
<td>Keyset Parameters Entry – Type 1 Basic and Enhanced FF w/CSE Format</td>
<td>89</td>
</tr>
<tr>
<td>2.2-3(f)</td>
<td>Keyset Parameters Entry – Type 1 U.S. Generic PPK w/o CSE Format</td>
<td>90</td>
</tr>
<tr>
<td>2.2-3(g)</td>
<td>Keyset Parameters Entry – ECMQV/AES w/o CSE – Phase 1 Format</td>
<td>90</td>
</tr>
<tr>
<td>2.2-3(h)</td>
<td>Keyset Parameters Entry – ECMQV/AES w/CSE – Phase 1 Format</td>
<td>91</td>
</tr>
<tr>
<td>2.2-3(i)</td>
<td>Keyset Parameters Entry – NATO ECMQV/AES w/o CSE Format</td>
<td>92</td>
</tr>
<tr>
<td>2.2-3(j)</td>
<td>Keyset Parameters Entry – NATO ECMQV/AES w/CSE Format</td>
<td>93</td>
</tr>
<tr>
<td>2.2-3(k)</td>
<td>Keyset Parameters Entry – NATO PPK/AES w/o CSE Format</td>
<td>94</td>
</tr>
<tr>
<td>2.2-3(l)</td>
<td>Keyset Parameters Entry – Extended Keysets List Support Format</td>
<td>94</td>
</tr>
<tr>
<td>2.2-3(m)</td>
<td>Certificate Field Format</td>
<td>95</td>
</tr>
<tr>
<td>2.2-3(n)</td>
<td>F(R) Field Format</td>
<td>96</td>
</tr>
<tr>
<td>2.2-3(o)</td>
<td>Operational Mode Parameters – Secure Voice</td>
<td>98</td>
</tr>
<tr>
<td>2.2-3(p)</td>
<td>Interoperable Security Levels</td>
<td>99</td>
</tr>
<tr>
<td>2.2-3(q)</td>
<td>Secure Voice Options</td>
<td>100</td>
</tr>
<tr>
<td>2.2-3(r)</td>
<td>Secure Data/Enhanced Secure Data Options</td>
<td>101</td>
</tr>
<tr>
<td>2.2-3(s)</td>
<td>Operational Mode Parameters – Secure Data</td>
<td>102</td>
</tr>
<tr>
<td>2.2-3(t)</td>
<td>Operational Mode Parameters – Enhanced Secure Data</td>
<td>103</td>
</tr>
<tr>
<td>2.2-3(u)</td>
<td>Enhanced Secure Data Option Entry</td>
<td>103</td>
</tr>
<tr>
<td>2.2-3(v)</td>
<td>Operational Mode Parameters – Secure Electronic Rekey</td>
<td>104</td>
</tr>
<tr>
<td>2.2-3(w)</td>
<td>Electronic Rekey Options</td>
<td>105</td>
</tr>
<tr>
<td>2.2-3(x)</td>
<td>Notification Message Format</td>
<td>110</td>
</tr>
<tr>
<td>2.2-3(y)</td>
<td>SCIP Standard Action Field Values</td>
<td>111</td>
</tr>
<tr>
<td>2.2-3(z)</td>
<td>Information Field Entry Format</td>
<td>112</td>
</tr>
<tr>
<td>2.2-3(aa)</td>
<td>SCIP Standard Information Code Definitions</td>
<td>113</td>
</tr>
<tr>
<td>2.2-3(bb)</td>
<td>CKL Transfer - Information Text</td>
<td>122</td>
</tr>
<tr>
<td>2.2-3(cc)</td>
<td>Secure Dial Characters</td>
<td>125</td>
</tr>
<tr>
<td>2.2-3(dd)</td>
<td>Secure Dial - Information Text</td>
<td>128</td>
</tr>
<tr>
<td>2.2-3(ee)</td>
<td>Secure Update - Information Text</td>
<td>131</td>
</tr>
<tr>
<td>2.2-3(ff)</td>
<td>Mode Change Request Message Format</td>
<td>136</td>
</tr>
</tbody>
</table>
LIST OF TABLES (Cont.)

Table 2.3-10 Mode Change Response Message Format.. 138
Table 2.4-1 SCIP Signaling Timeouts ... 142
Table 2.5-1 Source Definitions ... 144
Table 2.5-2 MIDs... 144
Table 2.5-3 Miscellaneous SCIP Signaling Constants .. 147
Table 3.3-1 Sync Management Frame Contents – Blank and Burst.. 155
Table 3.3-2 Secure MELP Transmission Bit Ordering – Blank and Burst............................... 157
Table 3.3-3 Sync Management Frame Contents – Burst w/o Blank .. 160
Table 3.3-4 Secure MELP Transmission Bit Ordering – Burst w/o Blank 161
Table 3.3-5 Clear MELP Voice Sync Management Frame Contents....................................... 164
Table 3.3-6 Clear MELP Voice Transmission Bit Ordering – Blank and Burst....................... 164
Table 3.3-7 Secure G.729D Voice Parameters.. 168
Table 3.3-8 G.729D Vocoder Frame Bit Transmission Order.. 169
Table 3.3-9 Secure G.729D Voice Sync Management Frame Contents................................. 170
Table 3.3-10 Secure G.729D Voice Encrypted Speech Frame Header Contents..................... 170
Table 3.3-11(a) Secure G.729D Voice Transmission Bit Ordering (Octets 1 - 8).................... 171
Table 3.3-11(b) Secure G.729D Voice Transmission Bit Ordering (Octets 9 - 288).............. 172
Table 3.4-1 Secure RT Asynchronous Data Message Format... 176
Table 3.4-2 Validity Count Field Values... 179
Table 3.4-3 Sync Management Frame Contents... 180
Table 3.4-4 Secure BET Asynchronous Data Transmission Bit Ordering............................. 181
Table 4.2-1 SCIP Rekey Message Format... 187
Table 4.4-1 Generic Rekey Protocol Data Units (GRPDUs)... 190
Table 5.1-1 Multipoint Cryptosync Message – General Format ... 193
Table 5.1-2 Sync Parameters ... 195
Table B.1-1 DTX VAF Values .. B-2
Table B.3-1 MELP Comfort Noise Parameter Values... B-4
Table B.4-1 Blank Period Values ... B-4
Signaling Plan Notice

Revision 3.2 of the SCIP Signaling Plan, designated as SCIP-210, is an update of Revision 3.1. It incorporates changes from ECPs 26 and 27. The more significant changes are listed below.

- Applicable documents were updated and acronyms were added.
- A Message Limitations section was added to ensure interoperability with SCIP devices.
- Signaling changes for Extended Keysets Lists were added.
 - An Extended Keysets List Message and an Extended Keysets List Support Keyset were added to extend the keyset list in the Capabilities Message.
 - The Common Capabilities Message Processing and Secure Call Setup Signaling Time Lines were modified to show optional Extended Keysets List Message exchanges.
- Signaling changes for Enhanced Secure Data were added.
 - An Enhanced Secure Data Operational mode was added along with an Enhanced Secure Data Operational Mode Parameters format.
 - Data options may be listed in the Operational Mode Parameters associated with Secure Data, Enhanced Secure Data, or both Operational Mode(s).
- Clarified that SCIP signaling can be used to negotiate specific data application uses (e.g., fax, chat) of data Options (e.g., Secure RT Data) by assigning them a different Option ID.
- Guaranteed Throughput (GT) Data was renamed to Best Effort Transport (BET) Data.
 - References to 2400 bps were removed; this data mode scales to any data rate.
- References to the order in which bits are encrypted were removed since the requirements are specified in the cryptographic specifications.
- Bit ordering at the application layer was separated from bit ordering at the lower layers.
 - SCIP terminal transmission bit ordering over various network interfaces will be provided in SCIP-214 and SCIP-215.

All changes are indicated by change bars. If changes were made to a figure or a table, a change bar appears at the end of the title.
1.0 INTRODUCTION

This document specifies the signaling requirements for the Secure Communication Interoperability Protocol (SCIP) operational modes. The requirements represent the efforts of a working group established for the development, analysis, selection, definition and refinement of signaling for the operational modes of a new class of secure voice and data terminals intended for use on the emerging digital narrowband channels. These channels include digital cellular systems such as GSM and CDMA, digital mobile satellite systems, and a variety of other narrowband digital systems that are also within the scope of interest for the working group. The SCIP signaling is designed to be sufficiently flexible so that subsequent updates and revisions may include various future networks of interest.

The main body of the SCIP Signaling Plan contains requirements common to all SCIP implementations. It specifies a secure overlay capable of interoperation with SCIP compatible equipment on various similar or disparate networks. Since the various networks will often have different lower-layer communications protocols, the SCIP secure overlay specification specifies the higher-layer end-to-end protocols only. The implementation-specific details for a terminal connected to a particular network are defined in an appendix specific to that network. The appendices specify modes, service options, and other network-specific issues that do not affect terminals on another network. A full terminal design requires the secure overlay specification and the appendix with the requirements for use of the lower-layer communications interface. The secure overlay description and the appendices may be published as a single document or separately as desired.

The goal of separating the secure overlay from the network-specific appendices is to ensure that there is a stable specification for interoperability and to avoid confusion caused by the differing requirements for the various networks. A specific product development will involve generation of a network-specific appendix which is independent of the application overlay requirements. Each terminal development program (e.g., CDMA cellular, etc.) can proceed independently by generating and/or modifying the implementation-specific appendix for that network. By avoiding modifications to the secure overlay description, configuration management will be simplified. Also, developers of a terminal for one network need not be concerned with the lower-layer requirements for another network.
1.1 Purpose

The purpose of this document is to define the signaling for point-to-point and multipoint secure communication among terminals operating over narrowband digital networks. The Signaling Plan defines:

1. The exchange of keys, certificates or other information between point-to-point terminals preparatory to the exchange of secure voice or data traffic,

2. The transmission of secure voice traffic among the user terminals for point-to-point and multipoint operation using the DoD standard MELP or NATO standard MELPe vocoder at 2400 bps, and the ITU-T Recommendation G.729 Annex D CS-ACELP vocoder at 6400 bps,

3. The transmission of secure data traffic between the user terminals for point-to-point secure data communication,

4. The security control signaling necessary to establish, maintain, and terminate the secure mode of operation,

5. The signaling to support point-to-point electronic or over-the-air rekey of the keys or keying material used by the terminals,

6. The signaling point of departure to allow vendors to add proprietary signaling and modes of operation to the interoperable standard modes defined by the remainder of the signaling plan.

The purpose of this Signaling Plan is to support communication between SCIP terminals independent of the transport network being used (e.g., digital wireless networks, IP networks, and PSTN/ISDN networks). The signaling is intended to operate using commercially available standards based data services, and standard Interworking Functions (IWFs) with no need for additional specialized interworking functions or operations.

Within the class of commercially operated digital wireless networks, the purpose of this Signaling Plan is to define the signaling required for secure voice operation over the CDMA and GSM digital cellular systems, mobile satellite systems, and other narrowband digital systems.
1.2 Scope

This Signaling Plan is intended to specify the end-to-end signaling used by the secure voice and data elements. Nothing will be contained in the Signaling Plan about the additional signaling within the communication links that might be used to convey the signaling between the terminal elements.

It is within the scope of this Signaling Plan to provide flexibility for the extension to subsequent versions so that if changes are required to incorporate additional networks and objectives, the changes can be incorporated.

It is not within the scope of the Signaling Plan to dictate or otherwise specify any particular method of implementation. Where implementation methods may be implied by the signaling, this is only for illustrative purposes. The potential for new features after the first equipment models, however, suggests that implementers may want to perform the implementation with some flexibility and expansion potential for subsequent models of equipment designed to operate over additional networks.

The Signaling Plan is intended to define the SCIP overlay signaling for the clear digital voice and secure voice/data applications using a standard data bearer service. The SCIP clear digital voice mode signaling is based on the possibility that a voice-followed-by-data communications service for the clear to secure mode transition may not exist. Note that the SCIP clear digital voice mode utilizes SCIP specific signaling and is compatible with SCIP devices only.

Signaling aspects that are specifically outside the scope of this signaling plan are:

1. Signaling for the creation of the network connection between terminals as required to establish a path for the “native” (non-SCIP) clear or non-secure mode of operation.

2. Signaling for establishing the bearer service or service option preparatory to the initiation of the secure mode of operation.
1.3 Definitions

The following terms are used throughout this document:

Initiator - The terminal that initiates the secure call setup.

Responder - The terminal that responds to the signaling sequence started by the Initiator.

Leader - The terminal that begins a signaling sequence as a result of some user/machine determined condition, e.g., out of sync detection, voice/data transition, activating the non-secure control, or an error (failed call) condition.

Follower – The terminal that responds to the signaling sequence started by the Leader.

Local – The terminal where operation is currently being described.

Remote – The far-end terminal.

Clear – Not encrypted (does not refer to a user action).

Protected – A level of security used for Sensitive, but Unclassified information. Note that “protected” with a lower case “p” refers to the standard English definition.

Credentials – Certificate and F(R).

MER-OC – If this capability is implemented, it must be as specified herein.

Type 1 – NSA approved encryption for protection of Classified information.

Non-Type 1 – NSA or NIST approved encryption for protection of Sensitive, but Unclassified information.

ECMQV/AES – Non-Type 1 cryptographic suite that is specified in SCIP-231.

NATO ECMQV/AES – NATO interim cryptographic suite, specified in SCIP-232, for protection of Classified information.

SCIP-23x – The Cryptography Specifications listed in Section 1.5.1 (e.g., SCIP-230, SCIP-231, or SCIP-232).
1.4 Acronyms and Abbreviations

The following acronyms and abbreviations are used within this document.

ACL - Access Control List
AES - Advanced Encryption Standard
AMBE - Advanced Multi-Band Excitation
APDU - Application Protocol Data Unit
ASN.1 - Abstract Syntax Notation One
BCH - Bose-Chaudhuri, Hocquenghem (Error Correcting Code)
BER - Bit Error Rate
BET - Best Effort Transport
bps - bits per second
CCITT - International Consultative Committee on Telegraphy and Telephony
CDMA - Code Division Multiple Access
CELP - Codebook Excited Linear Prediction
CIK - Crypto Ignition Key
CF - Central Facility
CKL - Compromised Key List
COI - Community of Interest
CRC - Cyclic Redundancy Check
CSE - Call Setup Encryption
CTS - Clear to Send
DCD - Data Carrier Detect
DER - Distinguished Encoding Rules
DSR - Data Set Ready
DTE - Data Terminal Equipment
DTMF - Dual Tone Multi-frequency
DTR - Data Terminal Ready
DTX - Discontinuous (Voice) Transmission
ECMQV - Elliptic Curve Menezes-Qu-Vanstone
ECU - End Cryptographic Unit (e.g., STE)
EIA - Electronic Industries Association
EOM - End of Message
EOT - End of Transmission
EKMS - Electronic Key Management System
ESC - Escape
FC - Frame Count
FCT - Force Continuous Transmission
FDX - Full Duplex
FEC - Forward Error Control/Forward Error Correction
FF - FIREFLY
FIPS - Federal Information Processing Standard
FNBDT - Future Narrowband Digital Terminal
FSVS - Future Secure Voice System
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRFE</td>
<td>Generic Rekey Front End</td>
</tr>
<tr>
<td>GRPDU</td>
<td>Generic Rekey PDU</td>
</tr>
<tr>
<td>HDX</td>
<td>Half Duplex</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>ISDN</td>
<td>Integrated Services Digital Network</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organization</td>
</tr>
<tr>
<td>ITU-T</td>
<td>International Telecommunication Union - Telecommunication Standardization Sector</td>
</tr>
<tr>
<td>IV</td>
<td>Initialization Vector</td>
</tr>
<tr>
<td>IWF</td>
<td>Interworking Function</td>
</tr>
<tr>
<td>kbps</td>
<td>kilobits per second</td>
</tr>
<tr>
<td>KG</td>
<td>Key Generator</td>
</tr>
<tr>
<td>KMC</td>
<td>(STU-III) Key Management Center</td>
</tr>
<tr>
<td>KMF</td>
<td>Key Management Facility - Synonymous with CF</td>
</tr>
<tr>
<td>KMID</td>
<td>Key Material Identifier</td>
</tr>
<tr>
<td>KP</td>
<td>Key Processor</td>
</tr>
<tr>
<td>KPF</td>
<td>Key Processing Facility</td>
</tr>
<tr>
<td>LIT</td>
<td>Line Interface Terminal</td>
</tr>
<tr>
<td>LMD</td>
<td>Local Management Device</td>
</tr>
<tr>
<td>lsb</td>
<td>Least Significant Bit</td>
</tr>
<tr>
<td>MCS</td>
<td>Multipoint Cryptosync message</td>
</tr>
<tr>
<td>MELP</td>
<td>Mixed Excitation Linear Prediction</td>
</tr>
<tr>
<td>MELPe</td>
<td>Mixed Excitation Linear Prediction - Enhanced</td>
</tr>
<tr>
<td>MER</td>
<td>Minimum Essential Requirement</td>
</tr>
<tr>
<td>MID</td>
<td>Message Identifier</td>
</tr>
<tr>
<td>ms</td>
<td>millisecond</td>
</tr>
<tr>
<td>msb</td>
<td>Most Significant Bit</td>
</tr>
<tr>
<td>NATO</td>
<td>North Atlantic Treaty Organization</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards & Technology</td>
</tr>
<tr>
<td>PCM</td>
<td>Pulse Code Modulation</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit</td>
</tr>
<tr>
<td>PLC</td>
<td>Partial Long Component</td>
</tr>
<tr>
<td>PN</td>
<td>Pseudo-Noise</td>
</tr>
<tr>
<td>POTS</td>
<td>Plain Old Telephone Service</td>
</tr>
<tr>
<td>PPK</td>
<td>Pre-Placed Key</td>
</tr>
<tr>
<td>PSTN</td>
<td>Public Switched Telephone Network</td>
</tr>
<tr>
<td>RT</td>
<td>Reliable Transport</td>
</tr>
<tr>
<td>RTS</td>
<td>Request to Send</td>
</tr>
<tr>
<td>SCIP</td>
<td>Secure Communication Interoperability Protocol</td>
</tr>
<tr>
<td>SCN</td>
<td>Specification Change Notice</td>
</tr>
<tr>
<td>sec</td>
<td>second</td>
</tr>
<tr>
<td>SM</td>
<td>Sync Management frame</td>
</tr>
<tr>
<td>SOM</td>
<td>Start of Message</td>
</tr>
<tr>
<td>SPI</td>
<td>Security Parameters Index</td>
</tr>
<tr>
<td>STE</td>
<td>Secure Terminal Equipment</td>
</tr>
</tbody>
</table>
1.5 Applicable Documents

The following documents are applicable to the extent specified in the remainder of the Signaling Plan. Where conflicts may exist, the order of precedence shall be to this specification, then to other SCIP-related specifications, then to NSA specifications, Industry standards, Federal and DoD standards, and National and International standards, in that order.

The documents controlled by the NSA are identified as the latest known issue in existence at the time of the issue date of this Signaling Plan. These documents may be changed through Specification Change Notices through a configuration controlled process. Industry, National, and International standards listed shall be considered the binding version unless this list of applicable specifications is changed through a Specification Change Notice (SCN) issued through the accompanying configuration control procedures.

This Signaling Plan references the Cryptography Specifications, listed in Section 1.5.1, throughout the document. When a Cryptography Specification is referenced, the signaling requirement is supported by the cryptographic suite specified in that Cryptography Specification. When a Cryptography Specification is not referenced, the signaling requirement is not applicable to the cryptographic suite specified in that Cryptography Specification.

1.5.1 NSA Documents

SCIP-215, Revision 2.0

SCIP-216, Revision 2.0
Minimum Essential Requirements (MER) for V.150.1 Gateways Publication 2 November 2007

SCIP-230, Revision 3.1
1.5.2 Industry Standards

EIA/TIA-232-E
Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment
Employing Serial Binary Data Interchange
July, 1991

1.5.3 International and National Standards

CCITT Recommendation Z.100
Functional Specification and Description Language (SDL)
(Melbourne 1988)
Fascicles X.1 - X.5

ITU-T Recommendation G.729
Coding of Speech at 8 kbit/s Using Conjugate-Structure Algebraic-Code-Excited Linear-Prediction (CS-ACELP)
03/96

ITU-T Recommendation G.729 Annex D
6.4 kbit/s CS-ACELP Speech Coding Algorithm
09/98

ITU-T Recommendation G.729 Annex F
Reference Implementation of G.729 Annex B DTX Functionality for Annex D
02/00
ISO/IEC 8824

ISO DIS 8825

1.5.4 Federal and DoD Standards

MIL-STD-3005
Analog-to-Digital Conversion of Voice by 2400 Bit/Second Mixed Excitation Linear Prediction (MELP)
20 December 1999

1.5.5 NATO Standards

NATO STANAG 4591
NATO Interoperable Narrow Band Voice Coder [MELPe]
In ratification – date TBD

1.5.6 Other Relevant Technical Papers

Discontinuous Transmission for MELP in FNBDT
Richard A. Dean and Lynn M. Supplee
October 22, 1998

Description of a Decoder for the (160, 128) t = 4 Binary BCH Code
[ITB:98-027]
Arnold M. Michelson
1.6 Signaling Plan Overview

The SCIP signaling provides the capability for the user to communicate with other compatible instruments using a secure overlay on a variety of digital networks. It includes the capability for both clear and secure communications, defined respectively as clear traffic and secure traffic. When the far-end terminal is a standard commercially available telephone, communication proceeds using the techniques and procedures of the underlying network. When the far-end terminal is another SCIP-compatible device, secure communication may proceed using the security capabilities specified herein. The secure modes of operation addressed in this Signaling Plan include both secure voice and secure data. In addition to the signaling for the operational traffic, the Signaling Plan also includes control signaling to establish and coordinate the clear and secure traffic modes of operation and signaling to perform electronic rekey when a call is established to the Electronic Key Management System Central Facility. The abilities to transmit and receive alerting and display information in the clear and secure dial digits are also included.

The Signaling Plan defines several modes of operation. For each mode of operation the minimal signaling that must be used by terminals, that are advertised as SCIP capable, is specified herein. This includes signaling for the “core SCIP functions,” such as secure call setup, that is specified in the main body of this Signaling Plan. However, not all SCIP capable terminals will implement all modes of operation (e.g., there will be data only and voice only terminals), and the MERs for a specific terminal will be defined elsewhere.

The Signaling Plan is intended to be “network independent,” that is, the signaling is designed to operate over a variety of narrowband, wideband, and protected digital networks. Requirements that are dependent on the network to which the terminal is connected, i.e., call establishment procedures and characteristics of the physical interface to the network, are specified in appendices to the Signaling Plan.

1.6.1 SCIP Application State Diagram

Figure 1.6-1 provides a high level conceptual application state diagram of a terminal that incorporates SCIP signaling.

The terminal starts in a Connection Terminated state in which there is no communication path to the far end. Before the signaling defined in this Signaling Plan may be executed, a clear data path, which will be used to carry the SCIP messages, must be established between the two ends. The state in which such a clear data path exists, but over which no SCIP application signaling is in process, is known as Connection Idle. (Note that while the term “Connection Idle” is used to name this state in this Signaling Plan, it is likely that a different name will be used for it in documents that define the native signaling of the terminal.) Of course the native signaling in the terminal may be used to invoke other underlying “native” functions (e.g., Native Clear Voice) as well. When a terminal transitions from a secure application to Native Clear Voice, the user must acknowledge the transition. Therefore, the terminal remains in the Native Clear Voice (Muted)
state until the user acknowledges the transition, and it then switches to the Native Clear Voice (Active) state.

Figure 1.6-1 SCIP Application State Diagram - Point-to-Point
SCIP applications can be accessed from Connection Idle. Standard SCIP clear voice applications (of which only Clear MELP Voice is currently defined) are chosen using the first SCIP call setup exchange, the Capabilities Exchange. In addition to the Capabilities Exchange, further exchanges are required to negotiate the parameters for standard SCIP secure applications. The choice of vendor unique SCIP applications also starts with a Capabilities Exchange, after which either the standard SCIP call setup signaling or vendor defined signaling may be used. Native functions may be executed directly from this state using native host signaling, or may be chosen using the Capabilities Exchange (in which case control passes back to Connection Idle and through Connection Idle to the chosen native function).

For changing between secure applications that use the same traffic key or between SCIP clear applications, a Mode Change function is provided. Transitions to other applications are made by returning to Connection Idle. If a transition from a SCIP application to a common native function is desired, this is indicated in the Notification Message. If a transition to a SCIP mode is desired, an ensuing Capabilities Exchange is executed. For vendor unique mode transitions, the terminals may use the standard mechanisms defined in this Signaling Plan or they may use vendor unique methods for executing the transitions.

To terminate the call from a standard SCIP application, a Notification Message is used to return to Connection Idle with an indication that the underlying native mechanism be used to close the underlying clear data path and return to the Connection Terminated state.

1.6.2 SCIP Protocol Layer Diagram

Figure 1.6-2 shows a protocol layer diagram for the SCIP secure applications and secure call setup. The Clear MELP Voice application is not shown in the diagram; however, it is exactly like the Secure MELP Voice application, but without the encryption layer.

![SCIP Protocol Layer Diagram](image)

Figure 1.6-2 SCIP Protocol Layer Diagram - Point-to-Point
1.7 Document Conventions

The process diagram symbols used in the figures in this Signaling Plan are based on the process diagram symbols defined in ITU Z.100 and are shown in Figure 1.7-1.

Figure 1.7-1 Process Diagram Symbols
2.0 SCIP SIGNALING – Point-to-Point Operation

This section defines the SCIP call setup and control signaling for point-to-point operation. Section 2.1 specifies SCIP Transport Layer signaling, message framing, Transport Layer messages, and the Transport Layer protocol rules. Section 2.2 specifies call setup signaling including the Capabilities Exchange, which is always required, and the Parameters/Certificate Exchange, F(R) Exchange, and Cryptosync Exchange, which are used to invoke a SCIP secure application. Section 2.3 specifies the SCIP call control signaling including the Notification Message, the Mode Change exchange, and the Two-Way Resync exchange. Section 2.4 specifies SCIP signaling timeouts, and Section 2.5 specifies signaling constants.

2.1 SCIP Message Transport

The SCIP MER message transport incorporates a number of error control mechanisms to facilitate reliable delivery of signaling messages to the far-end terminal. Signaling transmissions start with a Start of Message (SOM) and end with an End of Message (EOM) pattern and will be referred to herein as „frame groups”. A frame group is composed of frames, each of which is protected by a binary BCH code used for forward error correction (FEC) and a cyclic redundancy check (CRC) code. Recovery from transmission errors that cannot be corrected by the FEC is provided through the use of a combination of positive acknowledgment and selective reject on a frame-by-frame basis. A Retransmission Timer provides protection for the cases where an entire frame group is lost or does not arrive at the far-end terminal in a recognizable form. Finally, a sliding window function, 127 frames in length, is used to control transmissions.

2.1.1 The MER-OC Message Transport Option and the Branch Point Mechanism

Sections 2.1.2 through 2.1.8 specify a MER message transport that all SCIP terminals must implement. Additionally, alternate MER-OC message transports may be defined and implemented.

If a developer chooses to implement a MER-OC message transport, a timeout based branch transport mechanism must also be implemented. The timer shall be started after an end-to-end connection has been established. Through the branch transport mechanism, the MER-OC terminal shall fall back to the MER message transport unless it can determine, prior to the expiration of the timeout, that the far-end terminal will successfully establish a compatible MER-OC mode. For human factors reasons, the MER-OC timeout should be kept as short as possible but shall be long enough to be compatible with establishing the fallback MER message transport prior to the expiration of the First Message Timer (see Section 2.4).

Note that, except for the extra delay, a MER-only terminal should be unaware of the far end's attempt to establish a MER-OC transport. Note also that two terminals have a second chance to establish a compatible MER-OC transport by offering such developer defined Operational
Modes as part of the Capabilities Exchange. MER-OC message transports are not further defined in this document.

2.1.2 Message Transport Timelines

Throughout this document, references are made to “framed” and “full bandwidth” traffic. In the context of SCIP-210, “framed” traffic refers to traffic that is formatted with the framing information shown in Figure 2.1-2, starting with a SOM and ending with an EOM. In contrast, “full bandwidth” traffic refers to application traffic that is transmitted with only sync management information added as specified in Sections 3.3 and 3.4.2. It does not include a leading SOM and a trailing EOM, although it should be noted that there may be other layers of framing provided by the underlying network. Full bandwidth traffic is always preceded by the START pattern.

It should also be noted that the transmit and receive channels of a terminal operate independently. This means that if a terminal receives a START, its receive channel will be in full bandwidth traffic, but its transmit channel will not be in full bandwidth traffic until it transmits a START. The result is that during transition periods of entering or exiting full bandwidth traffic, a terminal may in fact be operating with both framed and full bandwidth traffic.

An example transport signaling timeline for transmitting a frame group using SCIP point-to-point signaling when in framed traffic is shown in Figure 2.1-1(a). This figure shows transmission of a frame group for which some of the frames are received with uncorrectable errors. The frames received with uncorrectable errors are retransmitted and received correctly on the second attempt.

The Transport Layer at Terminal A receives a message from the Message Layer, formats it into frames, adds an SOM and an EOM, and transmits the frame group. Terminal B receives the frame group and executes error detection and correction. In the case shown, some of the frames are received with uncorrectable errors; therefore, Terminal B formats a REPORT message identifying the frames that contained uncorrectable errors and transmits it. Upon receiving the REPORT message, Terminal A formats the frames that were not received correctly into a new frame group by adding an SOM and an EOM and transmits it. Terminal B receives this frame group, decodes the frames, and finds no uncorrectable errors. Therefore, Terminal B sends a REPORT message indicating that all of the frames contained in the original frame group have been received correctly. The intervals between transmissions are shown as IDLE in Figure 2.1-1(a). This means there is no transmission of data by the SCIP application; however, transmissions may occur on individual links related to handshaking performed by the underlying channel protocols.
An example transport signaling timeline for transmitting a frame group using SCIP point-to-point signaling when in full bandwidth traffic is shown in Figure 2.1-1(b). This figure shows transmission of a frame group for which all of the frames are received successfully on the first attempt. Also, following the frame group transmission and acknowledgment, the terminals remain in framed operation.

The Transport Layer at Terminal A receives a message from the Message Layer, formats it into frames, adds an SOM and an EOM, and prepares it for transmission. Since the terminals are in full bandwidth traffic, an ESCAPE is transmitted followed immediately by the frame group. Terminal B detects the ESCAPE, switches to framed receiver operation, receives the frame group, and checks it for errors. In the case shown, none of the frames are received with uncorrectable errors. Since Terminal B is still in full bandwidth transmitter operation, it transmits an ESCAPE followed immediately by a REPORT message indicating that all of the frames in the frame group were received successfully. Both terminals are now in framed operation, so the intervals following the transmissions are shown as IDLE.
Another example transport signaling timeline for transmitting a frame group using SCIP point-to-point signaling when in full bandwidth traffic is shown in Figure 2.1-1(c). This figure shows transmission of a frame group for which all of the frames are received successfully on the first attempt. In this example, following the frame group transmission and acknowledgment, the terminals reenter full bandwidth operation.

The Transport Layer at Terminal A receives a message from the Message Layer, formats it into frames, adds an SOM and an EOM, and prepares it for transmission. Like the previous example, the terminals are in full bandwidth traffic, so an ESCAPE is transmitted followed immediately by the frame group. Terminal B detects the ESCAPE, switches to framed receiver operation, receives the frame group, and checks it for errors. Again, none of the frames are received with uncorrectable errors. Since Terminal B is still in full bandwidth transmitter operation, it transmits an ESCAPE followed immediately by a REPORT message indicating that all of the frames in the frame group were received successfully. Following transmission of the REPORT message, Terminal B transmits the START pattern followed by full bandwidth traffic. When Terminal A has received the REPORT message, it transmits the START pattern followed by full bandwidth traffic.
2.1.3 Transport Framing

The SCIP signaling may be required to operate over channels with up to 1% bit error rate. To allow operation over such channels, frame groups shall be segmented and formatted into 20-octet frames as shown in Figure 2.1-2 prior to transmission. Each frame shall contain a one-octet Frame Count, 13 data octets, a two-octet CRC, and four octets of FEC parity. As shown in the figure, the frame group begins with an eight-octet SOM and ends with an eight-octet EOM. The frame size is predicated upon the use of a (160, 128) shortened BCH error correcting code described in Section 2.1.3.4.

![Figure 2.1-2 Transmission Frame Group](image)

The SOM permits the receiver to reliably detect the frame group in moderate error conditions and to start processing it. The Frame Count permits frames to be identified individually so that only those frames received with uncorrectable errors need to be retransmitted. The Forward Error Correcting code provides the capability to correct errors occurring during transmission, and a Cyclic Redundancy Check permits detection of residual errors after error correction has been performed. Finally, the EOM allows the Transport Layer to determine the end of a received frame group. On a retransmission, the same format is used, except that only requested frames are transmitted. When a transmission is received, each frame is FEC decoded, and the CRC is computed to determine if the frame contains uncorrectable errors.

The detailed format of a frame group, shown in Table 2.1-1, indicates how octets and bits within octets shall be ordered at the SCIP application layer. The order in which octets are transmitted over the network is dependent upon the lower layers (i.e., transport and below) and is, therefore, independent of the SCIP application layer. SCIP terminal transmission bit ordering over various network interfaces will be provided in SCIP-214 (non-IP network interface only) and SCIP-215 (IP network interface only).
Each message shall be partitioned into 13-octet data segments that are transmitted in order. Octets 1 through 13 shall be placed in the first frame to be transmitted, octets 14 through 26 in the second frame, etc. Any octets left over shall be transmitted in the Message Data field of the final frame, which shall be padded out to 13 octets with padding octets having a value of 0x00. Octets 1 - 13 of the message are placed in octets 10 - 22 of the frame group, octets 14 - 26 of the message are placed in octets 30 - 42 of the frame group, etc. Bits within an octet of the message are placed in the corresponding bit position of the frame, i.e., bit 1 of a message octet is placed in bit 1 of the corresponding octet of the frame, etc.

Table 2.1-1 Frame Group Format

<table>
<thead>
<tr>
<th>Octets</th>
<th>= Bits</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOM</td>
<td>1</td>
<td>SOM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 1 1 1 1 1 1 1 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 1 0 1 0 1 1 1 0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>First Frame</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Frame Count</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Message Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X X X X X X X X X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X X X X X X X X X</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>CRC</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>b7 b6 b5 b4 b3 b2 b1 b0</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>b8 b9 b10 b11 b12 b13 b14 b15-msb</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>b0-lsb b1 b2 b3 b4 b5 b6 b7</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>FEC</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>b24 b25 b26 b27 b28 b29 b30 b31-msb</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>b0-lsb b1 b2 b3 b4 b5 b6 b7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9+20M</td>
<td>Mth Frame</td>
</tr>
<tr>
<td></td>
<td>9+20(M-1)</td>
<td>Frame Count</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X X X X X X X X X</td>
</tr>
<tr>
<td></td>
<td>28+20(M-1)</td>
<td>EOM</td>
</tr>
<tr>
<td></td>
<td>9+20M</td>
<td>1 0 0 0 0 0 0 0 1</td>
</tr>
<tr>
<td></td>
<td>16+20M</td>
<td>1 0 1 0 1 0 0 0 1</td>
</tr>
</tbody>
</table>

M = Number of frames in the frame group
2.1.3.1 Start of Message

The Start of Message is a 64-bit pseudorandom sequence that begins each transmit frame group. It is designed to allow acceptable detection performance in the anticipated error environments, and to allow the receiver to determine the first bit of the first octet of a frame group. The SOM value is specified in Table 2.5-3. The first frame shall immediately follow SOM transmission.

2.1.3.2 Frame Count

As shown in Figure 2.1-2, the first octet of each frame of a transmitted frame group shall contain the Frame Count. The first frame of the first message transmitted, after initial entry or upon re-entry from a native mode, shall have Frame Count = 0x01. The Frame Count shall be incremented for each subsequent frame transmitted (modulo 256 - with return to 0x01 after 0xFF) without regard to frame group boundaries. The Frame Count is not reset upon entry to or exit from a SCIP application. In particular, it shall continue with the next value in sequence following a transition from call setup signaling to a reliable transport application. For Transport Layer control messages (REPORT), the Frame Count shall be set to 0x00 for all frames. This identifies these messages as Transport Layer control messages.

Editor’s Note: Note that with a \(k\)-bit Frame Count, which provides a Frame Count range of \(2^k\), the maximum window size is limited to \(2^{k-1}\) outstanding frames in order to prevent ambiguities. For this Signaling Plan, a window size of 128 frames outstanding would have been the result of a one-octet Frame Count field. However, Frame Count = 0x00 is reserved for Transport Layer control messages, thus a window size of 127 frames outstanding results.

2.1.3.3 Cyclic Redundancy Check

A Cyclic Redundancy Check shall be calculated over the Frame Count and Message Data fields of each frame. The CRC shall be the North American standard CRC-16. Its generator polynomial is \(P(x) = x^{16} + x^{15} + x^2 + 1\). The CRC shall be computed as follows. Let \(S(x)\) be the polynomial representing the 112 bits (14 octets) of the transport frame beginning with the least significant bit of the Frame Count and extending, in the order that the bits are transmitted, through the most significant bit of the 13\(^{th}\) octet of the Message Data field. The least significant bit of the Frame Count is the coefficient of the highest degree term of \(S(x)\). The transmitted CRC checksum, \(F(x)\), shall be the ones complement of the remainder of \((x^{16}S(x) + x^{112}(x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1))/P(x)\). Note that multiplying \(S(x)\) by \(x^{16}\) is equivalent to shifting \(S(x)\) 16 places to provide the space for the 16-bit CRC parity bits, and adding \(x^{112}(x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)\) to \(x^{16}S(x)\) is equivalent to inverting the first 16 bits of \(S(x)\). \(F(x)\) is then added to \(x^{16}S(x)\) forming the 128-bit transport frame, exclusive of the FEC field. The coefficient of the \(x^{15}\) term of \(F(x)\) shall be transmitted immediately following the most significant bit of the 13\(^{th}\) octet of the Message Data field (see Table 2.1-1).
Editor’s Note: Inverting the first 16 bits of $S(x)$ can also be accomplished in a shift register implementation by setting the register to all “ones” initially. This permits the receiver to detect erroneous addition or deletion of zero bits at the leading end of $S(x)$. Complementing the remainder permits the receiver to detect addition or deletion of trailing zeros that may appear as a result of errors. At the receiver, the shift register is again set to all “ones” initially, and the CRC is computed over the received $S(x)$. If the computed and received CRC are the same value, there are no errors.

2.1.3.4 Forward Error Control

Forward error control shall be implemented with a four error correcting binary BCH code shortened from a natural block length of 255. The block length of the code is 160; there are 128 information bits and 32 check bits per code block. The check bits are computed over the Frame Count, Message Data, and CRC fields, that is, over 128 information bits or 16 octets. The generator polynomial is

$$g(x) = x^{32} + x^{31} + x^{30} + x^{29} + x^{27} + x^{26} + x^{25} + x^{22} + x^{20} + x^{19} + x^{17} + x^{16} + x^{14} + x^{9} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + 1.$$

The check bits for the code shall be computed as follows. Let $I(x)$ be the polynomial representing the 128 bits to be encoded beginning with the least significant bit of the Frame Count and extending, in the order that the bits are transmitted, through the most significant bit of the second octet of the CRC field. The least significant bit of the Frame Count is the coefficient of highest degree in $I(x)$. The transmitted check bits, $R(x)$, shall be calculated as

$$R(x) = (x^{32} I(x)) \mod g(x).$$

Note that multiplying $I(x)$ by x^{32} is equivalent to shifting $I(x)$ 32 places to provide space for the 32 check bits. $R(x)$ is then added to $x^{32} I(x)$ to form the 160-bit BCH code word. The coefficient of the x^{31} term of $R(x)$ shall be transmitted immediately following the most significant bit of the second octet of the CRC field (which contains the least significant bit of the CRC), and the least significant bit of $R(x)$ shall be transmitted last (see Table 2.1-1).
2.1.3.5 End of Message

The End of Message is a 64-bit pseudorandom sequence that immediately follows the final frame of each transmitted frame group. It allows the receiving terminal to reliably detect the end of a received frame group in the anticipated error environments. The EOM value is specified in Table 2.5-3. Note that it is the bit-by-bit complement of the SOM. EOM shall be transmitted following the final octet of the final frame of a frame group.

2.1.4 Escape

The ESCAPE sequence is a 256-bit pseudorandom sequence that allows reliable detection in the background of full bandwidth traffic under expected channel conditions. The ESCAPE sequence is used to permit the detection of transmitted frame groups that interrupt full bandwidth traffic. The value of the ESCAPE sequence is specified in Table 2.5-3.

Transmit and receive processing for the ESCAPE are shown in Figure 2.1-3. When a terminal is transmitting full bandwidth traffic (entry into full bandwidth traffic is described in Section 3), it shall precede frame group transmissions with an ESCAPE. (Whether or not the far-end terminal receiver has entered full bandwidth traffic is irrelevant. If it has entered full bandwidth traffic, the ESCAPE is necessary. If it has not yet done so, the ESCAPE will be ignored, and the SOM will be detected.)

When transmission of a frame group, which can be either a Call Control or a REPORT message, is invoked during full bandwidth transmission, the terminal shall stop transmitting full bandwidth traffic, transmit the ESCAPE sequence, and enable framing. The terminal shall then format and transmit the requested frame group as specified in Section 2.1.6. (Note that the state of the terminal’s receiver remains unchanged.)

A terminal that receives an ESCAPE sequence during full bandwidth reception shall enable framed reception and process the incoming frame group as specified in Section 2.1.7. (Note that the state of the terminal’s transmitter remains unchanged.)
NOTES:
1. A transmitting terminal is considered to be in full bandwidth traffic if it has transmitted a START. A receiving terminal is considered to be in full bandwidth traffic if it has received a START.
2. Can be either call control messages or REPORT.

Figure 2.1-3 ESCAPE Processing
2.1.5 Transport Layer Control Messages

Transport Layer control messages are messages that are exchanged between peer Transport Layers and are not passed up to higher layers. They shall be transmitted with the Frame Count field set to 0x00 to distinguish them from messages intended for higher layers. The REPORT message is the only Transport Layer control message currently defined for SCIP signaling. The REPORT message shall have a length of one frame.

2.1.5.1 REPORT Message

The REPORT message provides both the capability to acknowledge successful reception of contiguous frames of received messages and the capability to selectively reject individual frames of received messages. It contains an ACK’ed Frame Count field that corresponds to the last consecutive message frame that was received successfully (either with no errors or with correctable errors) and NAK’ed Frame fields corresponding to a maximum of seven message frames that were lost (either not received or received with uncorrectable errors). Conditions under which the REPORT message may be transmitted are specified in Section 2.1.5.1.2.
2.1.5.1.1 REPORT Message Format

The format of the REPORT message is shown in Table 2.1-2.

<table>
<thead>
<tr>
<th>Table 2.1-2 REPORT Message Data Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 (msb)</td>
</tr>
<tr>
<td>MID</td>
</tr>
<tr>
<td>0-msb</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>Message Length</td>
</tr>
<tr>
<td>0-msb</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>Message Version</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ACK’ed Frame Count</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>NAK’ed Frame #1</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>NAK’ed Frame #2</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>NAK’ed Frame #3</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>NAK’ed Frame #4</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>NAK’ed Frame #5</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>NAK’ed Frame #6</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>NAK’ed Frame #7</td>
</tr>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

- For the REPORT message, the value of the MID is 0x0020.
The Message Length contains the actual length of the message body (including the length of the Message Length field itself but not including the length of the MID field) in octets. The value of the field is an unsigned binary integer with the high order bit being bit 8 of octet 3 and the low order bit being bit 1 of octet 4. It is always set to 0x000B, since this is a fixed length message.

For the version of the REPORT message defined in this version of the Signaling Plan, the value of the Message Version field is 0x00.

The ACK’ed Frame Count field contains the Frame Count corresponding to the most recent frame being acknowledged.

The NAK’ed Frame fields contain the Frame Counts corresponding to up to seven frames being negatively acknowledged (i.e., indicating that the frame was not received successfully). If fewer than seven frames are to be NAK’ed, the remaining (unused) NAK’ed Frame fields shall be set to 0x00. Also, if more than seven frames are to be NAK’ed, multiple REPORT messages shall be transmitted.

2.1.5.1.2 Conditions for REPORT Message Transmission

The REPORT message shall be transmitted to indicate both successful (either error-free or with correctable errors) reception of contiguous message frames and lost message frames (either not received or received with uncorrectable errors). Except after a frame group containing Transport Layer frames (i.e., frames with Frame Count 0x00) where it should not be sent, the REPORT message shall be queued for transmission whenever an EOM or an unexpected SOM (indicating that a previous EOM was lost) is received. In the transmit queue, REPORT messages have priority over messages received from the higher layers and shall be transmitted first.

The ACK’ed Frame Count field shall be set to the Frame Count of the last frame of contiguous frames received successfully. That is, the ACK’ed Frame Count indicates that all frames in the window up to and including the indicated frame have been received successfully. In the case where the first frame upon entry from Native Mode is received in error, the ACK’ed Frame Count shall be set to 255 (i.e., to 0xFF).

If there are uncorrectable errors in the received frames (as detected by failure of FEC decoding and/or CRC verification), the NAK’ed Frame fields shall be populated with their Frame Counts. The NAK’ed Frame fields serve as a request to the far-end terminal for retransmission of the indicated frames. The NAK’ed Frame fields shall be set to the Frame Counts of up to seven frames either not received or received with uncorrectable errors. NAK’ed Frames included within a REPORT message shall be in Frame Count sequence (e.g., frame 10 before frame 11, frame 255 before the next frame 1) with the first Frame Count appearing in octet 7. If more than seven frames are to be NAK’ed, an alternative to sending multiple REPORT messages that provide the capability for NAK’ing the frames individually is to request that all frames, beginning with the first frame to be NAK’ed, be retransmitted (i.e., request that the transmitter go back to this frame and restart the transmission). This shall be accomplished by setting all seven NAK’ed Frame fields in the REPORT message to the Frame Count of the frame at which the retransmission is to start.
If more than seven frames are not received or are received with uncorrectable errors and multiple REPORT messages are created and transmitted, the first REPORT message shall contain the seven lowest (in Frame Count sequence) NAK’ed Frame Counts, the next REPORT message shall contain the next seven lowest NAK’ed Frame Counts and so on until no NAK’ed Frames remain. As in the case of a single REPORT message, the NAK’ed Frame Counts included within each REPORT message shall be in Frame Count sequence.

If multiple REPORT messages are waiting in the transmit queue due to a busy transmitter, the information may be consolidated and transmitted as a single REPORT message. Also, if frames are received that have been previously acknowledged (indicating loss of a previous REPORT message) and these frames are subsequently received with uncorrectable errors, they will not be negatively acknowledged, but instead shall be acknowledged again and then discarded, as they have previously been received successfully.

Editor's Note: Note that while the specifications dictate when the REPORT must be sent, there are no restrictions concerning the transmission of additional REPORTs. Additional REPORTs may be sent at the discretion of the implementer. For example, a terminal may transmit a REPORT message prior to a timeout during which no frames are received. This allows frames received successfully to be acknowledged in the case where the final portion of a message, including the EOM, is lost during transmission and no subsequent transmissions occur during the timeout interval. The “retransmit starting at frame N” capability may be used to avoid a timeout, e.g., where a transmission disturbance has caused frame alignment to be lost, i.e., all received frames following the disturbance are failing FEC/CRC processing.

2.1.5.1.3 Processing for REPORT Message Reception

The NAK’ed Frame fields of the REPORT message indicate that specific frames have not been received successfully. Note that the NAK’ed Frame fields may be empty (i.e., filled with all 0’s), in which case processing in addition to that specified below for the ACK’ed Frame Count is not necessary. Upon or after receipt of one or more REPORT messages containing NAK’ed Frame Counts, a terminal shall format one or more frame groups, as defined in Section 2.1.3, containing only those frames indicated in the NAK’ed Frame fields, and shall transmit them to the far end. Within the retransmission, frames shall be ordered in Frame Count sequence (e.g., frame 10 before frame 11, frame 255 before the next frame 1). A terminal receiving a REPORT message with all seven NAK’ed Frame fields set to the same value shall go back to the frame indicated in the NAK’ed Frame fields and restart transmitting frame groups. The retransmission timer (Section 2.1.6.3) shall be restarted (from its initial value) immediately upon transmission of the EOM following the retransmitted (NAK’ed) frames.

The ACK’ed Frame Count field of the REPORT message indicates that all frames up to and including the ACK’ed Frame Count have been received successfully by the far-end terminal. The terminal receiving the REPORT can therefore move the start of its transmit window ahead to the frame following the ACK’ed Frame Count, discarding the frame corresponding to the ACK’ed Frame Count and all previous frames. Note that frames shall only be removed from the transmit window after they have been acknowledged; that is, a REPORT message with an
ACK’ed Frame Count greater than or equal to the Frame Counts of all frames removed must have been received. The Retransmission Timer shall also be stopped when a REPORT message is received that acknowledges all outstanding frames within the transmit window.

It should be noted that while a transmitting terminal is required to send a REPORT message upon receipt of an EOM or an unexpected SOM (indicating that a previous EOM was lost) (see Section 2.1.5.1.2), REPORT messages may also be transmitted at other times. Therefore, a terminal shall accept and process REPORT messages as they are encountered in the received frame groups.

2.1.6 Message Transmission

The Message Transmission function is shown in Figure 2.1-4. The processing of requests to transmit messages (both messages requested by the higher layers and REPORT messages that are internal to the Transport Layer) is discussed in Section 2.1.6.1. Actions taken by the Message Transmission function on receipt of a REPORT message are discussed in Section 2.1.6.2. Actions to be taken on a Retransmit Timeout are discussed in Section 2.1.6.3. A window size of 127 is used, i.e., up to 127 unacknowledged frames may be outstanding.

2.1.6.1 Transmit Request

This section addresses the transmission of messages when requested by the higher layers (including the SCIP Call Setup messages discussed in Section 2.2, the SCIP Call Control messages discussed in Section 2.3, and the framed SCIP Reliable Transport application messages discussed in Sections 3.4.1 and 4.2). It also addresses the transmission of REPORT messages (discussed in Section 2.1.5.1) when requested by the Message Reception function (discussed in Section 2.1.7).

Messages received from the higher layers shall be transmitted in the order in which the requests for transmission are made. When both are awaiting transmission, REPORT messages shall be transmitted before messages received from the higher layers.

When transmission of a message is requested by the higher layers, the Message Transmission function shall check to see if room exists in the window. The window is full if the Frame Count of the next frame to be transmitted minus the Frame Count of the last acknowledged frame, modulo 255, is 128 (i.e., if the difference modulo 255 is 128). However, REPORT messages may be transmitted even if the window is full. If the window is full and the message is not a REPORT, the message is retained. If the window is not full or if the message is a REPORT, a frame group shall be transmitted. In the case where the message being transmitted is not a REPORT, the frame group may contain up to as much of the message as will fit in the window, and the remainder of the message will be retained. If the window is full, the retained message (or the retained portion of a partially transmitted message) shall be transmitted when the window is no longer full.
The frame group is formatted as specified in Section 2.1.3. An SOM is transmitted first. Then, while the window constraint permits, message frames are transmitted, followed by the EOM. Frame groups may contain frames from one or more messages. If an entire message does not fit in the current window, that part of the message not transmitted is retained and shall be transmitted when the window is no longer full. When frame transmission is stopped due to a full window, the last frame transmitted shall be followed by an EOM. The next transmission shall then begin with an SOM. Immediately upon transmission of the frame group EOM, unless the message was a REPORT, the Retransmit Timer (Section 2.1.6.3) will be (re)initialed to its initial value and (re)started so that the frames may be retransmitted if no REPORTs are received.

Editor’s Note: Note that although this specification dictates certain times when frame groups must be terminated (e.g., a full transmit window), other frame groups may be terminated at the transmitter’s discretion. A frame group may be any length ≥ 1 frame. Any transmission must be a complete frame group.

If the transmission occurs subsequent to a transmitted START (i.e., during full bandwidth traffic), the frame group will be preceded by an ESCAPE as specified in Section 2.1.4.
NOTES:
1. This path includes the case where the event was received prior to entering the Transmit Wait state.
2. See Figure 2.1-3 if the event is recognized and processed during full bandwidth traffic. Transmit Wait, being part of framed operation, is not available during full bandwidth traffic.
3. The condition for retransmission of the ESCAPE is that the ESCAPE was transmitted initially and no REPORTs have since been received. Under this condition the transmitter assumes the receiver is still in full bandwidth traffic and has not reentered framed operation.
4. Queue the request for transmission at a later time.
5. The REPORT Received path is described in Section 2.1.5.1.3, and the Retransmit Timeout path is described in Section 2.1.6.3. The Transmit Request is described in Section 2.1.5.1.2 for REPORTs and in Section 2.1.3 for other Messages.
6. REPORT is always transmitted.
7. If both are pending, the REPORT Received is processed before the Retransmit Timeout. The REPORT Received processing may eliminate the need to perform the Retransmit Timeout processing if NAK'ed frames are retransmitted or if all outstanding frames have been correctly received.
8. A window is full when the Frame Count of the next new frame that will be transmitted minus the ACK'ed Frame Count in the last REPORT received, modulo 255, is 128.

Figure 2.1-4(a) Message Transmission
Figure 2.1-4(b) Message Transmission (Cont.)

NOTES (Cont.):
9. Queue the remaining frames for transmission at a later time.
10. This figure shows the frames being formatted as one frame group; however, it is also permissible to format them as multiple frame groups, each with its own SOM and EOM.
2.1.6.2 Transmitter Actions on Receipt of a REPORT

Upon receipt of a REPORT message, the Message Transmission function will proceed as follows.

If all frames that have been transmitted are acknowledged by the REPORT, the Retransmit Timer is stopped.

If frames are NAK’ed by the REPORT, a frame group containing the NAK’ed frames is formatted as specified in Section 2.1.5.1.3 and is transmitted. An SOM is transmitted first. This is followed by the NAK’ed frames and by an EOM. Immediately upon transmission of the frame group EOM, the Retransmit Timer (Section 2.1.6.3) will be (re)initialized to its initial value and (re)started so that the frames may again be transmitted if no REPORT is received.

Note that if the REPORT does not contain NAK’ed Frames and does not acknowledge all outstanding frames, the Retransmit Timer is neither (re)initialized nor stopped. (For example, if a terminal that has transmitted two frame groups receives a REPORT acknowledging the first of the two groups, it does not stop the Retransmit Timer, since the second of the two groups has not yet been acknowledged.)

Note also that if the window was full and the REPORT acknowledges frames that had not previously been acknowledged, the window is now no longer full, and frames that previously could not be transmitted may now be sent. (See Section 2.1.6.1.)

Editor’s Note: If multiple REPORT messages are received before the transmitter can act on them, the action taken by the transmitter can be based on combining the information contained in these REPORT messages.

2.1.6.3 Retransmit Timeout

In addition to the retransmission of NAK’ed frames described in Section 2.1.6.2, unacknowledged frames are retransmitted on the expiration of the Retransmit Timer.

The Retransmit Timer is (re)started at initial transmission and at each retransmission. Upon expiration of the Retransmit Timer, previously transmitted frames that have not yet been acknowledged shall be formatted as a frame group (see Section 2.1.3) and shall be retransmitted. (An implementer may choose to transmit only a subset of the outstanding frames.) If one or more previous frame groups were transmitted preceded by an ESCAPE and no REPORTs have since been received for frames in those frame groups, the retransmission shall be preceded by an ESCAPE.

An SOM is transmitted first. The SOM is followed by one or more unacknowledged frames. Within the retransmission, frames shall be ordered in frame count sequence (e.g., frame 10 before frame 11, frame 255 before the next frame 1). An EOM is then transmitted. Immediately
upon transmission of the frame group EOM, the Retransmit Timer shall be (re)initialized to its initial value and shall be (re)started so that these frames may again be retransmitted if no REPORTs are received. The value to use when (re)initializing the Retransmit Timer is discussed in Section 2.4.

REPORT processing shall be performed before Retransmit Timeout processing if both are pending. If the REPORT processing results in the Retransmit Timer being "stopped" or (re)started, the Retransmit Timeout processing is not performed.

Editor's Note: It is expected that an implementer will include logic to determine that transmissions are not getting through in spite of repeated retransmissions. This logic is left to the implementer's discretion. It is suggested that the action taken be Connection Terminate, though this is not required.

2.1.7 Message Reception

The Transport Layer Message Reception function is shown in Figure 2.1-5.

When the SOM is received, the receiver shall parse a 20-octet frame from the incoming data stream. The receiver may perform an FEC decode and shall use the CRC to verify that the frame was received correctly or that transmission errors were corrected during FEC decoding.

- If the CRC passes and the Frame Count is not zero (i.e., the message is not a Transport Layer control message) and is within the expected receive window, the frame shall be marked as correctly received. Frames that are outside the expected receive window shall be discarded without any additional processing. The receive window extends from the frame following the current ACK’ed Frame Count, i.e., the frame following the last receive frame that has been acknowledged, through 127 frames ahead of the ACK’ed Frame Count.

- If the CRC passes and the Frame Count is zero (i.e., the message is a Transport Layer control message), the terminal shall determine if a REPORT has been received. Each message type is recognized by its MID. (See Section 2.1.5 for the formats of these messages.) If a REPORT has been received, processing continues as defined in Section 2.1.5.1.3.

If a REPORT has not been received, also if the CRC does not pass, the following received octets are checked for an EOM. If an EOM or another SOM does not follow, the receiver shall parse the next 20-octet frame and repeat the above processing.

Editor's Note: Note that the implementer may opt to consider a frame as being received incorrectly if FEC decoding is not successful. In this case, checking the CRC is not required.
Figure 2.1-5(a) Message Reception
Figure 2.1-5(a) Figure 2.1-5(a)

B

C

EOM RECEIVED ?

REPORT ?

N

REPORT RECEIVED

Y

N

Y

1, 4

NEXT SOM RECEIVED ?

N

Y

1050

NOTES:
1. This flowchart is entered upon detection of the SOM. Frame groups for which the SOM is not detected may be discarded.
2. If the CRC fails, further attempts to recover useful information may be made at the implementer's discretion.
3. The REPORT message can be recognized by its unique MID.
4. Note that all octets following the SOM must undergo the processing shown in this flowchart.
5. Note that if a frame has previously been ACK'ed, it will not be NAK'ed if it is subsequently received in error.
6. One or more REPORT messages are queued for transmission.

Figure 2.1-5(b) Message Reception (Cont.)
The receiver shall repeat the above process until either the EOM or the next SOM has been received. Upon receipt of either the EOM or the next SOM, the terminal will format and transmit a REPORT as specified in Section 2.1.5. Multiple REPORTs may be used, since each REPORT can identify only seven NAK’ed frames.

Editor's Note: A developer may implement a timer that resends a REPORT if the requested retransmissions are not received. The retransmit logic defined in this Signaling Plan is consistent both with implementations having such a timer and with implementations not having such a timer.

If an EOM is received, the receiver waits for the next SOM. If an SOM is received, the receiver immediately starts processing the frames that follow the SOM.

Editor's Note: If a receiver is able to recognize and process frames in a frame group even when the SOM is not detected (e.g., by working backward from an EOM that is detected), this is permitted though it is not required.

2.1.8 Octet Alignment

The frame group and ESCAPE signaling are shown octet aligned and are expected to be transmitted octet aligned. However, the signaling may be carried on networks that do not preserve octet alignment. Therefore, the SCIP receiver shall be capable of recovering and processing the SCIP signaling shown herein even if it is not octet aligned when it is received.
2.2 SCIP Call Setup Signaling

This section defines the SCIP call setup signaling. Section 2.2.1 provides an overview of this signaling. Section 2.2.2 describes the Capabilities Exchange which is always required. Sections 2.2.3, 2.2.4 and 2.2.5 describe the Parameters/Certificate Exchange, the F(R) Exchange, and the Cryptosync Exchange which are used to establish a standard secure operational mode. The F(R) Exchange is not used for PPK processing. Section 2.2.6 provides a compilation of standard SCIP Operational Mode specific field definitions and values.

2.2.1 Introduction and Overview

This section defines the SCIP point-to-point call setup signaling. It is assumed that an end-to-end data channel has already been established, using the underlying channel protocols, by means outside the scope of this Signaling Plan. The signaling necessary to establish a SCIP point-to-point Operational Mode is then executed over this data channel. The two SCIP terminals proceed, independently and in parallel, to execute the signaling defined in this section (except in a few specific places which are indicated through the use of Initiator/Responder terminology).

2.2.1.1 Secure Call Setup Signaling Time Line

The following subsections provide examples of the overall flow for setting up a SCIP point-to-point secure call. The secure call setup time lines are shown with no retransmissions. The examples begin with two terminals both transmitting Capabilities Messages. Once they are received, the Initiator and Responder roles are determined from the information contained in the Capabilities Messages. During IDLE periods, there is no transmission of bits by the SCIP application, though there may actually be bits on individual links related to handshaking performed by the underlying data channel protocols.

If a failure occurs at any point during SCIP call setup or if the user selects Nonsecure during call setup, the Native Clear Voice/Connection Idle signaling described in Section 2.3.2.3 will be executed. If the user goes "on-hook" without waiting for call setup to complete, the Connection Terminate signaling described in Section 2.3.2.2 will be executed.

2.2.1.1.1 FIREFLY Example

A normal SCIP call setup using FIREFLY key is shown in Figure 2.2-1(a). One or more application messages are exchanged. The Capabilities Messages are always exchanged. If a standard secure Operational Mode is chosen, the Capabilities Exchange is followed by the exchange of optional Extended Keysets List Messages, Parameters/Certificate Messages, F(R) Messages, and Cryptosync Messages. These exchanges are described in Sections 2.2.2 through 2.2.5. Under exception conditions, Notification Messages (described in Section 2.3.2) may also be exchanged.
Figure 2.2-1(a) FIREFLY Secure Call Setup Signaling Time Line
Capabilities and optional Extended Keysets List Message Exchanges are specified in Section 2.2.2. In the example shown, when a clear data channel has been set up between the two terminals (the Connection Idle state) using the underlying native mechanisms, and is available to carry SCIP messages, both terminals simultaneously initiate SCIP call setup. It is also possible for one terminal to initiate the call setup, with the other terminal responding with a Capabilities Message only when it receives the Capabilities Message from the Initiator. If a terminal receives no recognizable response after sending a Capabilities Message, it will time out and reenter the Connection Idle state as described in Section 2.2.1.2.

Upon receipt of the Capabilities and optional Extended Keysets List Messages, the terminals will choose a common Operational Mode (generic application) and Keyset Type (a combination of key management signaling and traffic encryption). If a clear Operational Mode is chosen, the terminals will begin clear application signaling. In the example shown, a standard secure Operational Mode and Keyset are chosen and call setup signaling continues with the exchange of Parameters/Certificate and F(R) Messages. Since not all Operational Mode parameters are negotiated in the Capabilities Message, it may be necessary to exchange multiple Parameters/Certificate Messages for multiple Operational Modes before a Mode that both terminals can support is negotiated. Parameters/Certificate Exchange is specified in Section 2.2.3, and F(R) Exchange is specified in Section 2.2.4.

When the terminals have received the Parameters/Certificate and F(R) Messages, they will use the Certificate and F(R) for the chosen Keyset to generate a common traffic key. The terminals will then encode and encrypt information necessary to verify the cryptography and the preceding clear exchanges, and will enclose these encrypted packets in Cryptosync Messages. The Cryptosync Message also carries the Application IV for the chosen Operational Mode. The Cryptosync Messages are now exchanged. If the two terminals have different CKL versions for the chosen Keyset, the terminal containing the newer CKL will wait until it receives a Cryptosync Message then transmit its CKL in one or more Notification Messages prior to transmitting its Cryptosync Message. Once the CKL Transfer is complete, the Cryptosync Messages have been successfully exchanged, and the "packets" have been verified, the terminals will initiate the secure application. The CKL Transfer is described in Section 2.3.2.4, the Cryptosync Exchange is described in Section 2.2.5, the startup of application signaling for standard applications is described in Section 3.2, and the signaling for each of the standard secure applications is described in subsequent subsections of Section 3.

2.2.1.2 PPK Example

A normal SCIP call setup using PPKs is shown in Figure 2.2-1(b). One or more application messages are exchanged. The Capabilities Messages are always exchanged. If a standard secure Operational Mode is chosen, the Capabilities Exchange is followed by the exchange of optional Extended Keysets List Messages, Parameters/Certificate Messages, and Cryptosync Messages.
These exchanges are described in Sections 2.2.2, 2.2.3, and 2.2.5. Under exception conditions, Notification Messages (described in Section 2.3.2) may also be exchanged.

Figure 2.2-1(b) PPK Secure Call Setup Signaling Time Line

While not shown, the outgoing Cryptosync Message must also be acknowledged before Filler may begin. See Figures 3.3-1, 3.3-4 and 3.4-4 for a continuation of this flow.
Editor's Note: Note that the dotted lines indicate a functional relationship where one message must be received before the second message can be formatted and transmitted.

Capabilities and optional Extended Keysets List Message Exchanges are specified in Section 2.2.2. In the example shown, when a clear data channel has been set up between the two terminals (the Connection Idle state) using the underlying native mechanisms, and is available to carry SCIP messages, both terminals simultaneously initiate SCIP call setup. It is also possible for one terminal to initiate the call setup, with the other terminal responding with a Capabilities Message only when it receives the Capabilities Message from the Initiator. If a terminal receives no recognizable response after sending a Capabilities Message, it will time out and reenter the Connection Idle state as described in Section 2.2.1.2.

Upon receipt of the Capabilities and optional Extended Keysets List Messages, the terminals will choose a common Operational Mode (generic application) and Keyset Type (in this case, a PPK is chosen). If a clear Operational Mode is chosen, the terminals will begin clear application signaling. In the example shown, a standard secure Operational Mode and PPK Keyset are chosen and call setup signaling continues with the exchange of Parameters/Certificate Messages. Since not all Operational Mode parameters are negotiated in the Capabilities Message, it may be necessary to exchange multiple Parameters/Certificate Messages for multiple Operational Modes before a Mode that both terminals can support is negotiated. Parameters/Certificate Exchange is specified in Section 2.2.3.

When the terminals have received the Parameters/Certificate Messages, they will encode and encrypt information necessary to verify the cryptography and the preceding clear exchanges, and will enclose these encrypted packets in Cryptosync Messages. The Cryptosync Message also carries the Application IV for the chosen Operational Mode. The Cryptosync Messages are now exchanged. Once the Cryptosync Messages have been successfully exchanged, and the "packets" have been verified, the terminals will initiate the secure application. The Cryptosync Exchange is described in Section 2.2.5, the startup of application signaling for standard applications is described in Section 3.2, and the signaling for each of the standard secure applications is described in subsequent subsections of Section 3.

2.2.1.2 First Message Time-Out

A First Message Timer is started when the Capabilities Message is transmitted (see Section 2.2.2). This timer enables the terminal to time out should the far end not respond with a message that is recognizable as a SCIP message. Should this timer expire, the terminal shall execute the Failed Call logic defined in Section 2.3.2.3.1, with an Information Code of **SCIP response not received**, to return to Connection Idle state.
2.2.1.3 Unrecognized Messages

In the case where a terminal receives an unrecognized message, the terminal may silently discard it or invoke either the Failed Call or Connection Terminate options as defined in Section 2.3. If the decision is to silently discard the message, the terminal shall remain in the same signaling state as prior to receiving it.

2.2.1.4 Message Limitations

To ensure interoperability, terminals implementing SCIP-210, Rev. 3.2 or later shall send SCIP Call Setup and Notification Messages (excluding CKL Transfer) with a message limitation of 1024 octets, except when the ability to send longer messages has been defined and negotiated. Note that this message limitation is on the total message length; no additional limitations are imposed on the length of variable length fields within these messages. Note that if a terminal must include a very long Keysets List in the Capabilities Message that causes the Capabilities Message to surpass this message length limitation, the optional Extended Keysets List Messages must be used (see Section 2.2.2.4). All terminals implementing SCIP-210, Rev 3.2 or later shall be capable of receiving SCIP Call Setup and Notification Messages (excluding CKL Transfer) with a total message length of at least 1024 octets.

If the terminals offer multiple Operational Modes in the Capabilities Messages and the Parameters/Certificate Messages resulting from the chosen Operational Mode do not have compatible Parameters, the terminals will continue to negotiate Operational Modes (see Section 2.2.2.3.2) and transmit Parameters/Certificate Messages until either compatible Parameters are identified or Failed Call processing is executed. A terminal shall be capable of receiving at least three Parameters/Certificate Messages resulting from Operational Mode negotiations. Terminals may send more than three Parameters/Certificate Messages; however, interoperability is not guaranteed if more than three Parameters/Certificate Messages are sent.

2.2.2 Capabilities Message

The first step in SCIP Call Setup is the exchange of Capabilities Messages. This exchange permits the terminals to negotiate a clear or secure Operational Mode which both support. For secure Operational Modes it also permits the terminals to choose compatible Keysets for which Credentials will be subsequently exchanged.

2.2.2.1 Capabilities Message Definition

The format of the Capabilities Message is shown in Table 2.2-1. The Version 0 Capabilities Message contains the fields shown in Table 2.2-1(a) and Table 2.2-1(b), i.e., through the optional Keysets List field. The Version 1 or higher additions, shown in Table 2.2-1(c), begin with the Security Data Length field.
Table 2.2-1(a) Capabilities Message Format

<table>
<thead>
<tr>
<th></th>
<th>8 (msb)</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1 (lsb)</th>
<th>Bits Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>MID</td>
<td>0-msb</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0-0</td>
<td>1</td>
</tr>
<tr>
<td>Source ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message Length</td>
<td>X-msb</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>Message Version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiator Negotiation</td>
<td>X-msb</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X-lsb</td>
<td>4</td>
</tr>
<tr>
<td>Initiator Negotiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaling Plan Version</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>6</td>
</tr>
<tr>
<td>ID Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source ID</td>
<td>X-msb</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X-lsb</td>
<td>8</td>
</tr>
<tr>
<td>ID Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID Value</td>
<td>X-msb</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
</tr>
<tr>
<td>Modes Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational Modes List</td>
<td>X-msb</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X-lsb</td>
<td>12</td>
</tr>
<tr>
<td>Operational Modes List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Operational Mode Entry</td>
<td>X-msb</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X-lsb</td>
<td>14</td>
</tr>
<tr>
<td>First Operational Mode Entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L'th Operational Mode Entry</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X-lsb</td>
<td>16</td>
</tr>
<tr>
<td>L'th Operational Mode Entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L'th Operational Mode Entry</td>
<td>X-msb</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X-lsb</td>
<td>18</td>
</tr>
<tr>
<td>L'th Operational Mode Entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L'th Operational Mode Entry</td>
<td>X-msb</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X-lsb</td>
<td>20</td>
</tr>
</tbody>
</table>
Table 2.2-1(b) Capabilities Message Format (Cont.)

<table>
<thead>
<tr>
<th>8 (msb)</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1 (lsb)</th>
<th>Bits Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-msb</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>18+2L</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X-lsb</td>
<td>19+2L</td>
</tr>
</tbody>
</table>

Keysets Length

Table 2.2-1(c) Capabilities Message Format – Version 1 or Higher (Cont.)

<table>
<thead>
<tr>
<th>8 (msb)</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1 (lsb)</th>
<th>Bits Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-msb</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>20+2L</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X-lsb</td>
<td>21+2L</td>
</tr>
</tbody>
</table>

Security Data Length

Table 2.2-1(d) Capabilities Message Format – Version 1 or Higher (Cont.)

<table>
<thead>
<tr>
<th>8 (msb)</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1 (lsb)</th>
<th>Bits Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-msb</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>22+2L+M</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X-lsb</td>
<td>23+2L+M</td>
</tr>
</tbody>
</table>

Security Data

Table 2.2-1(e) Capabilities Message Format – Version 1 or Higher (Cont.)

<table>
<thead>
<tr>
<th>8 (msb)</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1 (lsb)</th>
<th>Bits Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-msb</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>24+2L+M+N</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X-lsb</td>
<td>25+2L+M+N</td>
</tr>
</tbody>
</table>

Terminal Priority COI

Table 2.2-1(f) Capabilities Message Format – Version 1 or Higher (Cont.)

<table>
<thead>
<tr>
<th>8 (msb)</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1 (lsb)</th>
<th>Bits Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-msb</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>26+2L+M+N</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X-lsb</td>
<td>27+2L+M+N</td>
</tr>
</tbody>
</table>

Terminal Priority

Table 2.2-1(g) Capabilities Message Format – Version 1 or Higher (Cont.)

<table>
<thead>
<tr>
<th>8 (msb)</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1 (lsb)</th>
<th>Bits Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-msb</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>28+2L+M+N</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X-lsb</td>
<td>29+2L+M+N</td>
</tr>
</tbody>
</table>

Alternate Initiator Negotiation

Table 2.2-1(h) Capabilities Message Format – Version 1 or Higher (Cont.)

<table>
<thead>
<tr>
<th>8 (msb)</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1 (lsb)</th>
<th>Bits Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-msb</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>30+2L+M+N</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X-lsb</td>
<td>31+2L+M+N</td>
</tr>
</tbody>
</table>

Random Number

• For the Capabilities Message the value of the MID is 0x0002.
• The Message Length shall contain the actual length of the message body (including the length of the Message Length field itself but not including the length of the MID field) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 3 and the low order bit being bit 1 of octet 4.
• The Message Version field shall be an unsigned binary integer with the high order bit being bit 8 and the low order bit being bit 1.

Editor's Note: A later version message than what is implemented in a terminal can be processed by discarding the newer information; i.e., changes must be made so that the message is backwardly compatible. This applies to all messages.

A terminal in the Interoperable Terminal Priority COI, defined in Table 2.2-3(c), shall set the Initiator Negotiation field as follows. If the terminal has the Standard Terminal Priority (see Table 2.2-3(d)), or if it transmits a Version 0 Capabilities Message, the I/R Bit shall contain a 1 for an initiating terminal and a 0 for a responding terminal. The lower 7 bits shall contain a Random Number to resolve the case where both terminals initially view themselves as Initiators or Responders. If the terminal is transmitting a Version 1 or higher Capabilities Message and has a priority other than the Standard Terminal Priority, the Initiator Negotiation field shall be set to 0x00.

• The value of Signaling Plan Version is 0x01 for this version of the Signaling Plan.
• The ID Information field may be used to identify the terminal’s "security element". Content, processing, and format may vary from implementation to implementation. The high order 5 bits of the first octet identify a Source for the ID Information definition. Currently identified Source ID values are defined in Section 2.5.1. The terminal may set all bits of this field to 0 if no ID Information is to be transmitted. [**Deviation Notice:** The value 0x28 in octet 8 (i.e., Source ID = 0x05 in bits 4 - 8 and bits 1 - 3 set to zero) indicates the terminal requires special formatting for CKL Transfer (see Section 2.3.2.1).]

• The Modes Length shall contain the actual length of the Operational Modes List (plus the length of the Modes Length field itself) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 16 and the low order bit being bit 1 of octet 17.
• The Operational Modes List shall contain one or more Operational Mode ID Entries. The Operational Mode ID Entries shall occur in order of preference; the ID of the preferred Operational Mode is placed in octets 18 and 19, the ID (if present) of the second choice Operational Mode is placed in octets 20 and 21, etc. The first entry on the Initiator's List which is also on the Responder's List is the Operational Mode chosen. Each Operational Mode ID in the Operational Modes List is 2 octets in length. The high order 5 bits of the first octet identify a Source for the Operational Mode definition. Currently identified Source ID values are defined in Section 2.5.1. The Source ID value plus the next 11 bits constitute an Operational Mode ID. The high order bit of the Operational Mode ID is placed in bit 8 of the first octet of the
Operational Mode List entry and the low order bit of the Operational Mode ID is placed in bit 1 of the second octet of the Operational Mode List entry. Currently defined standard Operational Mode IDs are identified in Table 2.2-2. In order to prevent the Secure Electronic Rekey Operational Mode (0x000E) from being negotiated on calls between two standard SCIP devices, this mode shall only be offered by a SCIP Line Interface Terminal (SCIP-LIT); furthermore, this is the only Operational Mode that will be offered by a SCIP-LIT.

Table 2.2-2 SCIP Standard Operational Modes

<table>
<thead>
<tr>
<th>Operational Mode ID</th>
<th>Operational Mode Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0001</td>
<td>Secure Voice</td>
</tr>
<tr>
<td>0x0002</td>
<td>Secure Data</td>
</tr>
<tr>
<td>0x0003</td>
<td>Enhanced Secure Data</td>
</tr>
<tr>
<td>0x0004</td>
<td>Clear MELP Voice</td>
</tr>
<tr>
<td>0x0008</td>
<td>Native Clear Voice</td>
</tr>
<tr>
<td>0x000E</td>
<td>Secure Electronic Rekey (offered only by the SCIP-LIT)</td>
</tr>
</tbody>
</table>

- The Keysets Length shall contain the actual length of the Keysets List (plus the length of the Keysets Length field itself) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of the first octet of the field and the low order bit being bit 1 of the second octet of the field.
- The Keysets List contains Keysets List Entries of the form given in Table 2.2-3(a). Each Keyset shall have a Keysets List Entry on the Keysets List. If only clear modes are offered, no Keysets need be listed on the Keysets List, i.e., the optional Keysets List need not be present. Keysets List Entries shall be in prioritized order per the rules defined by the controlling Terminal Priority COI. SCIP-230 or SCIP-232, Section 2.1.1.1.2; or SCIP-231, Section 2.1.1.2 defines the rules for the Standard Terminal Priority. Each entry shall consist of a Keyset Type, followed by a Keyset Parameters Length and Keyset Parameters (if parameters are defined) for a single Keyset. The length of the Keysets List is the sum of the lengths of the individual Keysets List Entries.
Table 2.2-3(a) Keysets List Entry - General Format

<table>
<thead>
<tr>
<th>Octets</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

- The first field of a Keysets List Entry shall contain a Keyset Type. The high order 5 bits of the first octet constitute a Source for the Keyset Type definition. Current Source IDs are defined in Section 2.5.1. The next 11 bits identify a unique Keyset Type within that Source. Currently defined values for Keyset Type are listed in Table 2.2-3(b). The high order bit of the Keyset Type is placed in bit 8 of the first octet, and the low order bit of the Keyset Type is placed in bit 1 of the second octet.

- The second field of a Keysets List Entry shall contain a Keyset Parameters Length. This shall contain the actual length, in octets, of the Keyset Parameters (plus the length of the Keyset Parameters Length itself). The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 3 and the low order bit being bit 1 of octet 4.

- The third field of a Keysets List Entry shall contain the Keyset Parameters. The Keyset Parameters field is variable length, and its contents are unique to each Keyset Type for which it is defined. For each standard Keyset Type, the format of the corresponding Keyset Parameters is defined in Section 2.2.6.1.1. This field is optional and is not present unless Keyset Parameters are defined for a given Keyset Type.

M = Length of Keyset Parameters field.
Table 2.2-3(b) SCIP Standard Keyset Types

<table>
<thead>
<tr>
<th>Keyset Type Code</th>
<th>Keyset Type Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0001</td>
<td>Key Management/Signaling: Type 1 Basic FIREFLY Key Exchange without Call Setup Encryption (CSE). Traffic Encryption: Type 1 traffic encryption algorithm specified in SCIP-230.</td>
</tr>
<tr>
<td>0x0002</td>
<td>Key Management/Signaling: Type 1 Enhanced FIREFLY Key Exchange without Call Setup Encryption. Traffic Encryption: Type 1 traffic encryption algorithm specified in SCIP-230. (Note 1)</td>
</tr>
<tr>
<td>0x0004</td>
<td>Key Management/Signaling: Type 1 Basic FIREFLY Key Exchange with Call Setup Encryption. Traffic Encryption: Type 1 traffic encryption algorithm specified in SCIP-230.</td>
</tr>
<tr>
<td>0x0007</td>
<td>Key Management/Signaling: Type 1 Enhanced FIREFLY Key Exchange with Call Setup Encryption. Traffic Encryption: Type 1 traffic encryption algorithm specified in SCIP-230. (Note 1)</td>
</tr>
<tr>
<td>0x0008</td>
<td>Key Management/Signaling: Type 1 U.S. Generic Pre-Placed Key (PPK) without Call Setup Encryption. Traffic Encryption: Type 1 traffic encryption algorithm specified in SCIP-230.</td>
</tr>
<tr>
<td>0x0009</td>
<td>Key Management/Signaling/Traffic Encryption: Non-Type 1 ECMQV/AES without Call Setup Encryption – Phase 1 as specified in SCIP-231.</td>
</tr>
<tr>
<td>0x000A</td>
<td>Key Management/Signaling/Traffic Encryption: Non-Type 1 ECMQV/AES with Call Setup Encryption – Phase 1 as specified in SCIP-231.</td>
</tr>
<tr>
<td>0x000B</td>
<td>Key Management/Signaling/Traffic Encryption: NATO ECMQV/AES without Call Setup Encryption as specified in SCIP-232.</td>
</tr>
<tr>
<td>0x000C</td>
<td>Key Management/Signaling/Traffic Encryption: NATO ECMQV/AES with Call Setup Encryption as specified in SCIP-232.</td>
</tr>
<tr>
<td>0x000D</td>
<td>Key Management/Signaling/Traffic Encryption: NATO PPK/AES without Call Setup Encryption as specified in SCIP-232.</td>
</tr>
<tr>
<td>0x0010</td>
<td>Reserved.</td>
</tr>
<tr>
<td>0x07FF</td>
<td>Extended Keysets List Support.</td>
</tr>
</tbody>
</table>

Note 1: Enhanced FIREFLY is a U.S. defined interoperable cryptographic mode. Any future use of Enhanced FIREFLY and release of supporting documentation to U.S. partners will be through bilateral agreements.
The Security Data Length shall contain the actual length of the Security Data (plus the length of the Security Data Length field itself) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of the first octet of the field and the low order bit being bit 1 of the second octet of the field.

- The Security Data field shall be populated per SCIP-230, Sections 2.1.1.3.1.5 and 3.4.2, SCIP-231, Sections 2.1.2.1.2 and 3.2.2, or SCIP-232, Sections 2.1.1.3.1.5 and 3.2.2.1. The Security Data’s most significant bit (as defined in SCIP-230, Section 3.1.2.1, SCIP-231, Section 3.1.2, or SCIP-232, Section 3.2.2.1) shall be placed in bit 8 of the first octet, and its least significant bit shall be placed in bit 1 of the N'th octet.

- The Terminal Priority COI is a unique value assigned to each Community of Interest that independently defines keyset selection rules. These rules are intended to provide a mechanism for SCIP devices to determine which terminal’s keyset ordering has priority. It identifies the community that controls the Terminal Priority and provides a mechanism for each community to control its terminals' priorities without international agreements. Currently defined Terminal Priority COI values are listed in Table 2.2-3(c).

Table 2.2-3(c) Terminal Priority COI Values

<table>
<thead>
<tr>
<th>Terminal Priority COI</th>
<th>Value</th>
<th>Keyset Selection Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interoperable</td>
<td>0x80</td>
<td>Specified in SCIP-230 or SCIP-232, Section 2.1.1.1.1; or SCIP-231, Section 2.1.1.1</td>
</tr>
</tbody>
</table>

- The Terminal Priority is a value, assigned by the Terminal Priority COI, that identifies the relative keyset ordering priority of a class of terminals within the community. Currently defined Terminal Priority values in the Interoperable Terminal Priority COI are listed in Table 2.2-3(d).

Table 2.2-3(d) Terminal Priority Values

<table>
<thead>
<tr>
<th>Terminal Priority</th>
<th>Value</th>
<th>Keyset Prioritization Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>0x80</td>
<td>Specified in SCIP-230 or SCIP-232, Section 2.1.1.2; or SCIP-231, Section 2.1.1.2</td>
</tr>
<tr>
<td>Non-Type 1/Type 1</td>
<td>0x40</td>
<td>To be defined elsewhere</td>
</tr>
</tbody>
</table>

Editor’s Note: Except for special cases, it is anticipated that terminals will use the Interoperable Terminal Priority COI and Standard Terminal Priority values. Keyset selection rules for terminals not in the Interoperable Terminal Priority COI are outside the scope of this document.
• The I/R bit in the Alternate Initiator Negotiation field shall contain a 1 for an initiating terminal and a 0 for a responding terminal. The lower 15 bits shall contain a Random Number to resolve the case where both terminals initially view themselves as Initiators or Responders.

Table 2.2-3(e) provides an example of a Capabilities Message that is appropriate for transmission by an Enhanced FIREFLY (FF) capable terminal. In the example shown, the terminal is loaded with US, CCEB, NATO, NATO Nations, and Coalition key material. The US and CCEB Keysets include a Current and a Next Universal Edition; the US Keysets are Enhanced FF capable. The US and NATO Keysets have optional Call Setup Encryption capability; therefore, they are offered with and without CSE. The US Keysets have two CSE keys associated with each Universal. The terminal offers one US and one NATO Pre-Placed Key. Finally, the terminal is also NATO ECMQV/AES and ECMQV/AES capable with optional CSE keys.
Table 2.2-3(e) Example of Capabilities Message Contents – Enhanced FF Capable

<table>
<thead>
<tr>
<th>Capabilities Message Field</th>
<th>Value</th>
<th>Length (octets)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MID</td>
<td>0x0002</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Message Length</td>
<td>0xXXXX</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Message Version</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Initiator Negotiation</td>
<td>0xXX</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Signaling Plan Version</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ID Information</td>
<td>0xXX...XX</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Modes Length</td>
<td>0x0006</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Secure Voice</td>
<td>0x0001</td>
<td>2</td>
<td>Note 1</td>
</tr>
<tr>
<td>Secure Data</td>
<td>0x0002</td>
<td>2</td>
<td>Note 1</td>
</tr>
<tr>
<td>Keysets Length</td>
<td>0x00ED</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (Enhanced FF with CSE)</td>
<td>0x0007</td>
<td>2</td>
<td>Note 2</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x000A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (US)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Next)</td>
<td>0x02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CSE SPI - 1</td>
<td>0xXX...XX</td>
<td>4</td>
<td>Note 2</td>
</tr>
<tr>
<td>CKL Version (Next)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (Enhanced FF with CSE)</td>
<td>0x0007</td>
<td>2</td>
<td>Note 2</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x000A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (US)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Next)</td>
<td>0x02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CSE SPI - 2</td>
<td>0xXX...XX</td>
<td>4</td>
<td>Note 2</td>
</tr>
<tr>
<td>CKL Version (Next)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (Enhanced FF with CSE)</td>
<td>0x0007</td>
<td>2</td>
<td>Note 2</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x000A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (US)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CSE SPI - 1</td>
<td>0xXX...XX</td>
<td>4</td>
<td>Note 2</td>
</tr>
<tr>
<td>CKL Version (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (Enhanced FF with CSE)</td>
<td>0x0007</td>
<td>2</td>
<td>Note 2</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x000A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (US)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.2-3(e) Capabilities Message Contents – Enhanced FF Capable (Cont.)

<table>
<thead>
<tr>
<th>Capabilities Message Field</th>
<th>Value</th>
<th>Length (octets)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal Edition (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CSE SPI - 2</td>
<td>0xXX...XX</td>
<td>4</td>
<td>Note 2</td>
</tr>
<tr>
<td>CKL Version (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (Enhanced FF w/o CSE)</td>
<td>0x0002</td>
<td>2</td>
<td>Note 2</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x0006</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (US)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Next)</td>
<td>0x02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CKL Version (Next)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (Enhanced FF w/o CSE)</td>
<td>0x0002</td>
<td>2</td>
<td>Note 2</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x0006</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (US)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CKL Version (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (Basic FF with CSE)</td>
<td>0x0004</td>
<td>2</td>
<td>Notes 2, 4</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x000A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (US)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Next)</td>
<td>0x02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CSE SPI - 1</td>
<td>0xXX...XX</td>
<td>4</td>
<td>Note 2</td>
</tr>
<tr>
<td>CKL Version (Next)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (Basic FF with CSE)</td>
<td>0x0004</td>
<td>2</td>
<td>Notes 2, 4</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x000A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (US)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Next)</td>
<td>0x02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CSE SPI - 2</td>
<td>0xXX...XX</td>
<td>4</td>
<td>Note 2</td>
</tr>
<tr>
<td>CKL Version (Next)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (Basic FF with CSE)</td>
<td>0x0004</td>
<td>2</td>
<td>Notes 2, 4</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x000A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (US)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CSE SPI - 1</td>
<td>0xXX...XX</td>
<td>4</td>
<td>Note 2</td>
</tr>
<tr>
<td>CKL Version (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Capabilities Message Field</td>
<td>Value</td>
<td>Length (octets)</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Keyset Type (Basic FF with CSE)</td>
<td>0x0004</td>
<td>2</td>
<td>Notes 2, 4</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x000A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (US)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CSE SPI - 2</td>
<td>0XX…XX</td>
<td>4</td>
<td>Note 2</td>
</tr>
<tr>
<td>CKL Version (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (Basic FF w/o CSE)</td>
<td>0x0001</td>
<td>2</td>
<td>Note 4</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x0006</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (US)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Next)</td>
<td>0x02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CKL Version (Next)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (Basic FF w/o CSE)</td>
<td>0x0001</td>
<td>2</td>
<td>Note 4</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x0006</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (US)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CKL Version (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (Basic FF w/o CSE)</td>
<td>0x0001</td>
<td>2</td>
<td>Note 4</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x0006</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (CCEB)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Next)</td>
<td>0x02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CKL Version (Next)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (Basic FF w/o CSE)</td>
<td>0x0001</td>
<td>2</td>
<td>Note 4</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x0006</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (CCEB)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CKL Version (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (NATO ECMQV/AES w/CSE)</td>
<td>0x000C</td>
<td>2</td>
<td>Note 2</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x000A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (NATO)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CSE SPI</td>
<td>0XX…XX</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CKL Version (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Capabilities Message Field</td>
<td>Value</td>
<td>Length (octets)</td>
<td>Notes</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>Keyset Type (NATO ECMQV/AES w/o CSE)</td>
<td>0x000B</td>
<td>2</td>
<td>Note 2</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x0006</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (NATO)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CKL Version (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (Basic FF w/o CSE)</td>
<td>0x0001</td>
<td>2</td>
<td>Note 4</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x0006</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (NATO Nations)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CKL Version (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (Basic FF w/o CSE)</td>
<td>0x0001</td>
<td>2</td>
<td>Note 4</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x0006</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal ID (Coalition)</td>
<td>(Note 3)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Universal Edition (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CKL Version (Current)</td>
<td>0x01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keyset Type (U.S. Generic PPK w/o CSE)</td>
<td>0x0008</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x0006</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PPK SPI</td>
<td>0XX…XX</td>
<td>4</td>
<td>Note 5</td>
</tr>
<tr>
<td>Keyset Type (NATO PPK/AES w/o CSE)</td>
<td>0x000D</td>
<td>2</td>
<td>Note 2</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x0006</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PPK SPI</td>
<td>0XX…XX</td>
<td>4</td>
<td>Note 5</td>
</tr>
<tr>
<td>Keyset Type (ECMQV/AES with CSE – 1)</td>
<td>0x000A</td>
<td>2</td>
<td>Note 2, 6</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x0007</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Keyset ID</td>
<td>0XX</td>
<td>1</td>
<td>Note 7</td>
</tr>
<tr>
<td>CSE SPI – 1</td>
<td>0XX…XX</td>
<td>4</td>
<td>Note 2, 8</td>
</tr>
<tr>
<td>Keyset Type (ECMQV/AES with CSE – 1)</td>
<td>0x000A</td>
<td>2</td>
<td>Note 2, 6</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x0007</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Keyset ID</td>
<td>0XX</td>
<td>1</td>
<td>Note 7</td>
</tr>
<tr>
<td>CSE SPI - 2</td>
<td>0XX…XX</td>
<td>4</td>
<td>Note 2, 8</td>
</tr>
<tr>
<td>Keyset Type (ECMQV/AES w/o CSE – 1)</td>
<td>0x0009</td>
<td>2</td>
<td>Note 2, 6</td>
</tr>
<tr>
<td>Keyset Parameters Length</td>
<td>0x0003</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Keyset ID</td>
<td>0XX</td>
<td>1</td>
<td>Note 7</td>
</tr>
</tbody>
</table>
Table 2.2-3(e) Capabilities Message Contents – Enhanced FF Capable (Cont.)

<table>
<thead>
<tr>
<th>Capabilities Message Field</th>
<th>Value</th>
<th>Length (octets)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Data Length</td>
<td>0xXXXX</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Security Data</td>
<td>0xXX...XX</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Terminal Priority COI</td>
<td>0x80</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Terminal Priority</td>
<td>0x80</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Alternate Initiator Negotiation</td>
<td>0xXXXX</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Mode implies only the generic application that will be used.
2. See SCIP-230 or SCIP-232, Section 2.1.1.1; or SCIP-231, Section 2.1.1, for keyset ordering rules.
3. See SCIP-230 or SCIP-232, Section 2.1.2.1, for applicable Universal ID values.
4. Basic FF Keyset Types are offered for backward compatibility.
5. See SCIP-230 or SCIP-232, Section 2.1.1.2.2, for the PPK attributes defined for the SPI.
6. ECMQV/AES – 1 indicates an ECMQV/AES – Phase 1 Keyset Type.
7. See SCIP-231, Section 2.1.1.2.
8. See SCIP-231, Section 2.1.2.1.2.

2.2.2.2 Capabilities Message Transmission

Capabilities Message transmission is shown in Figure 2.2-2. This signaling occurs at the beginning of SCIP point-to-point call establishment. It starts from the Connection Idle state. This signaling will also be executed when the terminal receives a request to transition from a SCIP clear application to a SCIP secure application or vice versa, and to negotiate a new application after a terminal transitions to Connection Idle on an error condition. The Notification exchange will bring both terminals to Connection Idle. Messages sent by a Follower prior to the Notification exchange may arrive after the Leader has entered Connection Idle and even after the Leader has entered the Wait for Capabilities Message state. Since only incoming Notification Messages and Capabilities Messages are valid during a transition, other messages received during the Connection Idle and Wait for Capabilities Message states must be discarded.

Editor's Note: Connection Idle is the state the terminals are in when a data channel exists between them, but no signaling is in process. It bridges the SCIP signaling specified herein and Native Mode signaling on the underlying network. Both SCIP and Native Mode signaling may be entered from this state. It is also the state the terminals can enter when a problem occurs while an attempt is made to resolve the problem. The terminal will be able to return from Connection Idle to try another Capabilities Exchange. It will also be able to execute some Notification related functions (e.g., Connection Terminate, Attention) defined in Section 2.3.2 and any non-SCIP native functions that are available from this state.
NOTES:
1. Connection Idle is the state the terminal is in when the initial clear data connection is established with the far end. It may also be entered as a result of a Failed Call.
2. Call setup may be requested either automatically or manually. It may be requested simultaneously at both terminals.
3. This path is included as a reminder that the Capabilities Exchange is not the only way to exit the Connection Idle state. It is not described in the text as it uses Host rather than SCIP signaling and thus may be different for each platform.
4. Criteria for requesting the Initiator or Responder role are intentionally not specified; however, some general guidelines are provided in the accompanying text.
5. This path is not SCIP standard signaling and as such is not discussed further.
6. Set I/R bit in Initiator Negotiation and/or Alternate Initiator Negotiation fields as specified in Section 2.2.2.1.
7. This permits the call to time out during initial call setup should the far-end device not be SCIP compatible.

Figure 2.2-2 Capabilities Message Transmission
A terminal will determine through some mechanism (e.g., a Capabilities Message is received, a button on the console is pressed, automatic start of SCIP call establishment when the data channel becomes available, etc.) that a point-to-point SCIP call is to be established. It shall then format a Capabilities Message as specified in Section 2.2.2.1 and transmit it to the far end. All Operational Modes and Keysets available for use during the SCIP call are offered. Vendor unique native Operational Modes may also be offered and negotiated. The Initiator/Responder (I/R) bit of the Initiator Negotiation field and/or Alternate Initiator Negotiation field (see Section 2.2.2.1) is set for the role (Initiator or Responder) desired for mode negotiation. There are no specific requirements for setting Initiator and Responder roles; however, the roles should be set in such a manner as to minimize the possibility of glare, i.e., two Initiators or two Responders. Possible approaches include setting to the opposite role of that indicated in a received Capabilities Message when a Capabilities Message is received before one is transmitted, setting the calling terminal as Initiator and the called terminal as Responder, setting a terminal as Initiator when no other information is available and a local call setup request occurs prior to receiving a Capabilities Message, etc. If a glare condition exists, it will be resolved using the Random Number portion of the Initiator Negotiation field or Alternate Initiator Negotiation field of the Capabilities Message as specified in Section 2.2.2.3.1.

The terminal shall then set a First Message Timer, since at this point during initial call setup it may not yet know that there is a SCIP compatible terminal at the far end. After setting the First Message Timer, the terminal will then wait to receive a Capabilities Message from the far end. Processing of the received Capabilities Message is specified in Section 2.2.2.3.

Editor's Note: The starting and stopping of the First Message Timer may be done by a terminal that has already received a Capabilities Message just to retain commonality of code, but it is functionally superfluous to do this.

2.2.2.3 Capabilities Message Reception

The processing of the Capabilities Message consists of Unique Processing and Common Processing. Unique Processing (see 2.2.2.3.1) of a received Capabilities Message occurs when the message is initially received. Common Processing (see 2.2.2.3.2) of the received Capabilities Message occurs

- when the message is initially received, and
- when the received Capabilities Message must be reexamined because a Parameters/Certificate Exchange determined that compatible Parameters do not exist for the negotiated Operational Mode, there is a security incompatibility, or there is an Access Control failure.
If either terminal transmits a Version 0 Capabilities Message, both terminals shall process Version 0 fields only. If both terminals transmit Message Version 1 or higher Capabilities Messages, the terminals shall process the entire portion of the message corresponding to the highest common version.

2.2.2.3.1 Capabilities Message Reception Unique Processing

This Section discusses the processing of the Capabilities Message when it is received.

The Capabilities Message reception is shown in Figure 2.2-3. The processing of the timeout, that occurs if no message is received from the far end, was previously described in Section 2.2.1.2.

If a terminal receives the far end's Capabilities Message before it has transmitted its own, it may begin processing the received Capabilities Message in parallel with generating its own so long as this does not delay transmission of its own Capabilities Message.

Upon receipt of a Capabilities Message, the terminal shall stop the First Message Timer, since it is now known that the far end terminal is SCIP compatible.

The Initiator terminal is now determined as follows. If both the transmitted and received Capabilities Messages are Version 1 or higher, the Alternate Initiator Negotiation field shall be used to determine the Initiator. If either Capabilities Message is Version 0, the Initiator Negotiation field shall be used. The Initiator Negotiation fields or Alternate Initiator Negotiation fields, treated as unsigned numbers, are compared. If the two values are equal, the terminal shall execute the Failed Call logic defined in Section 2.3.2.3.1 with the Information Code set to no initiator defined. Otherwise the Initiator and Responder roles will be adopted for Operational Mode choice in Section 2.2.2.3.2. The Initiator is the terminal that set the larger value in the field. (Note that if distinct Initiator and Responder roles were defined prior to this point, these roles are not changed. It is only when both terminals enter the Capabilities Exchange as Initiators or as Responders that this step has an impact and forces one of them to be an Initiator and one of them to be a Responder in subsequent steps.)

Signaling then continues as defined in Section 2.2.2.3.2.
NOTES:
1. This path includes the case where the Capabilities Message was received prior to entering the Wait for Capabilities Message state.
2. This permits the call to time out should the far-end device not be SCIP compatible.

Figure 2.2-3 Capabilities Message Reception Unique Processing

2.2.2.3.2 Common Capabilities Message Processing

The signaling described in this section is shown in Figure 2.2-4 and starts with the Operational Mode choice process. This processing can be entered from two places, and the rules for choosing the Operational Mode are slightly different in the two cases. The Initiator and Responder terminals for purposes of Operational Mode choice shall be determined as specified in Section 2.2.2.3.1. For any secure Operational Mode to be chosen, Keysets compatible with the Operational Mode and with each other shall exist in the Keysets Lists of the two terminals.
Case 1. The initial entry point is from Capabilities Message Reception (Section 2.2.2.3.1). At this point the terminal has received and processed the far end's Capabilities Message. The terminal shall choose the first Operational Mode Entry on the Initiator's Operational Modes List which is also on the Responder's Operational Modes List. Note that if Electronic Rekey is offered by the far-end terminal (indicating it is a SCIP-LIT), this mode shall be chosen, since it is the only Operational Mode offered by the LIT.

Case 2. The two terminals have performed a Parameters/Certificate Exchange. At this point they discover that while they share a common Operational Mode, they do not have compatible Parameters, there is a security incompatibility, or there is an Access Control failure for that Mode (see Section 2.2.3.3). If any of these occur, the terminals shall choose the next entry on the Initiator's Operational Mode List which is also on the Responder's List.

If there is no common Operational Mode (Case 1) on the Initiator's list that meets the choice process as specified above (other than Native Clear Voice, which is entered via Failed Call), the terminal shall execute Failed Call processing (defined in Section 2.3.2.3.1) with an Information Code of no common operational modes. If there is no alternate common Operational Mode (Case 2) that meets the choice process, the terminal shall execute Failed Call processing with an Information Code of no matching parameters, security incompatibility, or access control failure, as is appropriate for the problem encountered with the Operational Mode chosen initially.

Editor's Note: It is expected that the Capabilities Exchange will be the first exchange for all SCIP terminals. However, except for choosing a common non-standard Operational Mode using this exchange, the signaling associated with non-standard Operational Modes is not addressed in this Signaling Plan. Part of the definition of a non-standard Operational Mode is the definition of the associated call setup and call control signaling. While many non-standard Operational Modes will choose to piggyback on the standard call setup and call control exchanges, this is not required.

If a standard secure Operational Mode is chosen, a Keyset that is compatible with a Keyset in the other terminal shall also be chosen. If both the transmitted and received Capabilities Messages are Version 1 or higher and both terminals are in the Interoperable Terminal Priority COI, the Keyset Initiator shall be determined as follows.

- If the Terminal Priority fields contain different values, the terminal with the larger Terminal Priority value shall be the Keyset Initiator.
- If the Terminal Priority fields are the same, the Keyset Initiator shall be the same as the Initiator determined in Section 2.2.2.3.1.

If either of the Capabilities Messages is Version 0, the Keyset Initiator shall be the same as the Initiator determined in Section 2.2.2.3.1. Finally, a terminal in the Interoperable Terminal Priority COI shall be the Keyset Initiator when it attempts to communicate with a terminal that is not in the Interoperable Terminal Priority COI.
NOTES:
1. Extended Keysets List Messages may be received and optionally transmitted if an Extended Keysets List Support Keyset is identified in the Capabilities Messages of both terminals.
2. The keyset cannot be chosen until all Keysets List(s) have been received.
3. A terminal cannot choose another keyset if there is a problem with the negotiated keyset.
4. Messages may be sent independently by the Initiator, Responder, or both.
5. The user also has the option of choosing to terminate the call.
6. SCIP Clear MELP Voice as specified in Section 3.3. Vendor unique SCIP clear voice modes may also follow this path.

Figure 2.2-4 Common Capabilities Message Processing
Terminals implementing SCIP-210, Rev. 3.2 or later shall support the ability to receive and process the Extended Keysets List Messages as specified below. This capability is indicated using the Extended Keysets List Support Keyset Type and associated Additional Keysets parameter, as specified in Section 2.2.6.1.1.9. Fielded terminals that implement prior versions of SCIP-210 may not support this capability and may only negotiate the keyset using the keysets listed in the Keysets List of the Capabilities Message. The ability to transmit an Extended Keysets List Message is optional for all SCIP products.

Extended Keysets List Messages are transmitted only after the exchanged Capabilities Messages indicate that both terminals support Extended Keysets List Messages. A SCIP terminal shall only send an Extended Keysets List Message to a SCIP terminal that has indicated, in its Capabilities Message, that it supports Extended Keysets List Messages. If no Extended Keysets List Messages are exchanged, the Keyset shall be chosen using the keyset selection rules specified in SCIP-230 and SCIP-232, Section 2.1.1.1, and SCIP-231, Section 2.1.1

If Extended Keysets List Messages are supported by both terminals and there are remaining keysets that are not included within the Keysets List of the Capabilities Message, the terminal shall set the Additional Keysets parameter within the Extended Keysets List Support Keyset to indicate that it has more keysets to send, as specified in Section 2.2.6.1.1.9. The terminal shall then transmit an Extended Keysets List Message, as specified in Section 2.2.2.4. These messages are sent independently by the Initiator, Responder, or both.

The last entry in the Extended Keysets List shall be the Extended Keysets List Support Keyset. The Additional Keysets parameter within this Keyset will indicate if any more keysets exist that need to be sent in additional Extended Keysets List Message(s). In such cases, additional Extended Keysets List Messages shall be sent until all of the necessary keysets have been transmitted. The terminal shall then set the Additional Keysets parameter within the Extended Keysets List Support Keyset of the last Extended Keysets List Message to indicate that it does not have any more keysets to send.

Note that the entire Keysets List need not be transmitted during call setup. There are many reasons that a terminal may choose to identify a subset of its keysets in a given call setup message exchange. However, care must be taken when implementing any specific optimization for sending keysets. The final result of the optimized keyset exchange shall be the same keyset selection as if both terminals exchanged their entire Keysets Lists. For example, a terminal may recognize that the remote terminal has already transmitted all of its keysets and can, therefore, identify the specific keyset that should be negotiated, thereby eliminating the need to send keysets that will never be selected. If this specific keyset entry has already been transmitted, the terminal may transmit an Extended Keysets List Message which only contains the Extended Keysets List Support Keyset indicating that the terminal does not have any more keysets to send.

The receiving terminal shall process the Extended Keysets List Messages as they are received, as specified in Sections 2.2.2.4 and 2.2.6.1.1.9. If the Additional Keysets parameter (received in the Capabilities or Extended Keysets List Message) indicates that additional keysets will not be offered, all the keysets lists have been received and the terminal shall choose the Keyset as if the
keysets list in the Capabilities Message, and the keysets lists from all the Extended Keysets List Messages were appended in the order received, and had been sent in the original Capabilities Message. The Extended Keysets List Support Keysets shall not be included in the appended Keysets List since these Keysets are only used to determine subsequent keyset processing and are, therefore, never negotiated. Negotiation proceeds according to the keyset selection rules specified in SCIP-230 and SCIP-232, Section 2.1.1; and SCIP-231, Section 2.1.1. Note that since there is no limit on the number of Extended Keysets List Messages, these Messages may be processed as they are received and then discarded as long as these keyset selection rules are followed.

If the terminals do not have compatible Keysets and Clear MELP Voice is not supported by both terminals, the terminal shall execute Failed Call processing with an Information Code of no compatible keysets. If there is a common secure Operational Mode, the terminals have compatible Keysets, and the negotiated Keyset is not seed key, processing continues as defined in Section 2.2.3.2.

If no common secure Operational Mode and/or Keyset is available but both terminals support Clear MELP Voice, the terminal shall proceed as follows. If Clear MELP Voice is the first common Operational Mode, the terminal shall prompt the user and wait for an acknowledgment before entry into the Clear MELP Voice Operational Mode. The terminal shall initiate the SCIP Clear MELP Voice application as specified in Section 3.2.1. If Clear MELP Voice is not the first common Operational Mode, the terminal shall execute Failed Call processing with an Information Code of either no common operational modes or no compatible keysets, as appropriate (i.e., Clear MELP Voice cannot be an alternate mode choice from a Capabilities exchange; it is entered via Failed Call and another Capabilities exchange – see Section 2.3.2.3.1.).

Editor's Note: Note that as defined in Section 3.3.1.3, the Clear MELP Voice application is not actually entered until all outstanding framed messages are acknowledged.

If the negotiated Keyset is seed key and the chosen Operational Mode is not Rekey, the terminal shall execute Failed Call processing with an Information Code of seed key held. If the negotiated Keyset is seed key and the chosen Operational Mode is Rekey, processing continues as defined in Section 2.2.3.2.

2.2.2.4 Extended Keysets List Message Definition

If the Capabilities Message exceeds the total message length limitation specified in Section 2.2.1.4, any remaining keysets that will not fit within the Keysets List of the Capabilities Message may be listed in one or more Extended Keysets List Message(s). The rules for processing the Extended Keysets List Messages are specified in Section 2.2.2.3.2. The format of the Extended Keysets List Message is shown in Table 2.2-3(f).
Table 2.2-3(f) Extended Keysets List Message Format

<table>
<thead>
<tr>
<th>Octets</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>msb</td>
<td>MID</td>
</tr>
<tr>
<td>7</td>
<td>lsb</td>
<td>Source ID</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Message Length</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Message Version</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Sequence Number</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Extended Keysets List Length</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Extended Keysets List</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For the Extended Keysets List Message the value of the MID is 0x0003.
- The Message Length shall contain the actual length of the message body (including the length of the Message Length field itself but not including the length of the MID field) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 3 and the low order bit being bit 1 of octet 4.
- For the version of the Extended Keysets List Message defined in this version of the Signaling Plan, the value of the Message Version field is 0x00.
- The Sequence Number shall contain a unique number assigned to each Extended Keysets List Message. The value of the field shall be monotonically incremented from 0x01 for each sequential Extended Keysets List Message.
- The Extended Keysets List Length shall contain the actual length of the Extended Keysets List (plus the length of the Extended Keysets List Length field itself) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of the first octet of the field and the low order bit being bit 1 of the second octet of the field.

\[M = \text{Length of Extended Keysets List field.} \]
• The Extended Keysets List contains keysets list entries of the form given in Table 2.2-3(a). Only Keysets not previously listed shall have a keysets list entry on the Extended Keysets List. Keysets list entries in the Extended Keysets List Message shall be listed as specified for the keysets list entries in the Capabilities Message.

2.2.3 Parameters/Certificate Message

If a secure Operational Mode is chosen, the second step in SCIP Call Setup is the exchange of Parameters/Certificate Messages. The Credentials used by the SCIP Signaling have two parts, a Certificate and an F(R). These are exchanged in separate messages. Any parameters which must be negotiated for the chosen secure Operational Mode are also negotiated at this time. If a PPK Keyset is chosen, the Parameters/Certificate Messages are exchanged without the Certificate. If Clear MELP Voice is chosen, Credentials will not be exchanged (see also Section 2.2.6.5).

2.2.3.1 Parameters/Certificate Message Definition

The format of the Parameters/Certificate Message is shown in Table 2.2-4.
Table 2.2-4 Parameters/Certificate Message Format

<table>
<thead>
<tr>
<th>Octet</th>
<th>Description</th>
<th>Bits (lsb)</th>
<th>Octets</th>
<th>Description</th>
<th>Bits (lsb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0</td>
<td>MID</td>
<td>0 0 0 0 0 0 0 0</td>
<td>1-0</td>
<td>Source ID</td>
<td>0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>1-1</td>
<td>Message Length</td>
<td>X X X X X X</td>
<td>2-3</td>
<td>Message Version</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>4-4</td>
<td>Operational Mode</td>
<td>X X X X X X</td>
<td>5-5</td>
<td>Source ID</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>7-7</td>
<td>Keyset ID</td>
<td>X X X X X X</td>
<td>8-8</td>
<td>Keyset ID Length</td>
<td>X X X X X X</td>
</tr>
<tr>
<td></td>
<td>Parameters Length</td>
<td>X X X X X X</td>
<td>11+7</td>
<td>Parameters Length</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>13+13</td>
<td>Operational Mode Parameters (Optional)</td>
<td>X X X X X X</td>
<td>14+14</td>
<td>Certificate Length</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>15+15</td>
<td>Certificate Length</td>
<td>X X X X X X</td>
<td>16+16</td>
<td>Certificate (Optional)</td>
<td>X X X X X X</td>
</tr>
</tbody>
</table>

Notes:
- **N** = Length of Keyset ID.
- **L** = Length of Operational Mode Parameters.
- **K** = Length of Certificate.

SCIP-210
Revision 3.2
19 December 2007
- For the Parameters/Certificate Message the value of the MID is 0x0010.
- The Message Length shall contain the actual length of the message body (including the length of the Message Length field itself but not including the length of the MID field) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 3 and the low order bit being bit 1 of octet 4.
- For the version of the Parameters/Certificate Message defined in this version of the Signaling Plan, the value of the Message Version field is 0x00.
- The Operational Mode field shall contain the ID of the chosen Operational Mode. For the format and values of these IDs, see the definition of Operational Mode IDs in Section 2.2.2.1. The high order bit of the Operational Mode ID is placed in bit 8 of octet 6, and the low order bit of the Operational Mode ID is placed in bit 1 of octet 7.
- The Keyset Type field shall identify the type of the chosen Keyset. For the format and values of these Types, see the definition of Keyset Type in Section 2.2.2.1.
- The Keyset ID Length field shall contain the length, in octets, of the Keyset ID field (plus the length of the Keyset ID Length itself). The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 10 and the low order bit being bit 1 of octet 11.
- The Keyset ID field shall contain the ID of the chosen Keyset. Keyset IDs are unique to each Keyset Type. For each standard Keyset Type, the length and format of the corresponding Keyset ID are defined in Section 2.2.6.
- The Parameters Length field shall contain the length, in octets, of the Operational Mode Parameters field (plus the length of the Parameters Length itself). The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of the first octet of the field and the low order bit being bit 1 of the second octet of the field.
- The Operational Mode Parameters shall contain parameters for the chosen Operational Mode. The length, format and values of the Operational Mode Parameters are unique to each Operational Mode and are defined in Section 2.2.6 for each standard Operational Mode having a Parameters/Certificate Exchange. This field is optional and is not present unless Parameters are defined for a given Operational Mode.
- The Certificate Length field shall contain the length, in octets, of the Certificate field (plus the length of the Certificate Length itself). The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of the first octet of the field and the low order bit being bit 1 of the second octet of the field.
- The Certificate field shall contain the Certificate for the chosen Keyset. The length, format and contents are unique to each key exchange type and are defined in Section 2.2.6 for each key exchange type. This field is optional and is not present when a PPK Keyset is chosen.
2.2.3.2 Parameters/Certificate Message Transmission

Parameters/Certificate Message transmission is shown in Figure 2.2-5.

If a standard secure Operational Mode was chosen via the processing defined in Section 2.2.2.3.2, the following shall be performed. Both the parameters for the chosen Operational Mode and the Certificate (if applicable) of the chosen Keyset shall be transmitted in a Parameters/Certificate Message formatted as defined in Section 2.2.3.1. If the chosen Keyset is a Keyset Type with CSE and the local CSE key is not expired, the Parameters/Certificate Message shall be encrypted as specified in SCIP-230 or SCIP-231, Section 4.1.4; or SCIP-232, Section 4.4, prior to transmission. Signaling then continues as defined in Section 2.2.4.2. If a PPK Keyset is chosen, signaling continues as defined in Section 2.2.3.3.

The check for expired CSE key consists of comparing the Expiration Date of the local CSE key with the terminal's System Date (year/month) as specified in SCIP-230 or SCIP-232, Section 2.1.1.3.1.3. If the Expiration Date of the local CSE key is earlier, the terminal shall execute Failed Call processing (see Section 2.3.2.3.1) with an Information Code of *Local CSE key expired*. If an ECMQV/AES - Phase 1 Keyset Type is chosen, the expired CSE key check is skipped.
Figure 2.2-4

KEYSET TYPE WITH CSE CHOSEN?

Y

LOCAL CSE KEY EXPIRED?

N

ENCRIPT PARAM/CERT MESSAGE

NOTES:
1. If an ECMQV/AES - Phase 1 Keyset Type is chosen, the expired CSE key check is skipped.

FAILURE REQUEST

FAILEDCALL

Figure 2.2-5 Parameters/Certificate Message Transmission
2.2.3.3 Parameters/Certificate Message Reception

Parameters/Certificate Message reception is shown in Figure 2.2-6(a), Figure 2.2-6(b), and Figure 2.2-6(c).

The terminal may begin processing the far end's Parameters/Certificate Message, for the chosen Operational Mode and Keyset, when it is received. If a terminal receives the far end's Parameters/Certificate Message before it has transmitted its own Parameters/Certificate Message, it may begin processing the received Parameters/Certificate Message in parallel with generating its own Parameters/Certificate Message so long as this does not delay the transmission of its own message.

If the chosen Keyset is a Keyset Type with CSE, the received Parameters/Certificate Message is encrypted. Prior to processing, it shall be decrypted as specified in SCIP-230 or SCIP-231, Section 4.1.4; or SCIP-232, Section 4.4.
NOTES:
1. This path includes the case where the Parameters/Certificate message for the selected operational mode and keyset was received prior to entering the 'Wait for Parameters/Certificate Message' state.
2. Note that if multiple Parameters/Certificate messages must be transmitted, a subsequent Parameters/Certificate message may be preceded by an F(R) message that corresponds to the previous Parameters/Certificate message. This F(R) message is discarded.
3. This includes Key Cutoff Date failure.
4. Connection Idle is a state in which the underlying data channel is alive but idle.
5. Connection Terminate is a state in which the underlying data channel is brought down. This path is not standard SCIP signaling, and as such is not discussed any further.

Figure 2.2-6(a) Parameters/Certificate Message Reception
Figure 2.2-4

NOTES:
6. If the terminal has neither a CKL nor a System Date, it cannot perform the expired certificate test, and the "No" path is taken.
7. These are the Certificate verification tests defined in SCIP-23x.
8. If the chosen Keyset Type is not supported by an ACL, the "Yes" path is taken. If the chosen Keyset Type is supported by an ACL, the ACL test will be performed only if the ACL has been activated in the terminal.
9. Select next common Operational Mode on Initiator’s list.

Figure 2.2-6(b) Parameters/Certificate Message Reception (Cont.)
Figure 2.2-6(b) Parameters/Certificate Message Reception (Cont.)

1. Transmit a Parameters/Certificate message corresponding to the one received if this has not already been done.

NOTES:

Figure 2.2-7

Figure 2.2-8

Figure 2.2-9
The following applies to FIREFLY (defined in SCIP-230) and NATO ECMQV (defined in SCIP-232) Certificates only.

If the terminal does not have a local CKL for the chosen Universal Edition, the compromised key check below is skipped. If the terminal has no System Date (see SCIP-230, Section 2.1.2.3.2, or SCIP-232, Section 2.1.2.3.1), the expired key check below is also skipped.

The test for compromised key consists of checking for the received Certificate's KMID on the CKL and also comparing the Expiration Date in the Certificate with the Key Cutoff Date in the CKL (see SCIP-230 or SCIP-232, Sections 2.1.2.2.1 and 2.1.2.2.2). If the received Certificate's KMID is on the local CKL for that Universal Edition, or if the Expiration Date in the Certificate is earlier than the Key Cutoff Date in the CKL, the terminal shall terminate the connection immediately and without providing the far end terminal with any indication (i.e., without sending a Notification Message).

Editor's Note: A compromised Certificate is no longer carried on a CKL when its expiration date is earlier than the CKL's Key Cutoff Date. The CKL design assumes that such an expired key will not be communicated with.

The check for expired key consists of comparing the Expiration Date in the Certificate with the terminal's System Date (year/month) as specified in SCIP-230 or SCIP-232, Section 2.1.2.3.3. If the Expiration Date in the Certificate is earlier, the terminal shall execute Failed Call processing (see Section 2.3.2.3.1) with an Information Code of *Certificate expired*.

The Certificate verification tests specified in SCIP-230, Sections 2.1.3.2 and 2.1.3.2.3, or SCIP-232, Appendix F, are now performed. For Electronic Rekey, an additional test is performed to verify that the far-end terminal is a SCIP-LIT (see SCIP-230, Section 6.1, or SCIP-232, Appendix E.1). If the received Certificate fails any of these tests, the terminal shall execute Failed Call processing with an Information Code of *Certificate verification failure*.

The following applies only to the Phase 1 X.509 Certificate as defined in SCIP-231.

The Certificate verification tests specified in SCIP-231, Sections 2.1.3.3.2 and 2.1.3.3.4, are now performed. If the received Certificate fails any of these tests, the terminal shall execute Failed Call processing with an Information Code of *Certificate verification failure*.
The Operational Mode Parameters are now checked. For standard secure modes, the Operational Mode Parameters contain an Options List. (See Section 2.2.6.2 for Secure Voice Options, Section 2.2.6.3 for Secure Data Options, and Section 2.2.6.4 for Secure Electronic Rekey Options.) The Options List Entries will be examined in the order in which they appear. The first entry on the Initiator's Options List that is supported by the Responder shall be chosen.

If no entry on the Initiator's Options List is supported by the Responder, the Operational Mode is noted as one that has no compatible parameters and is not to be chosen. Processing then continues as specified in Section 2.2.2.3.2 (Case 2), where the terminals will attempt to choose another Operational Mode.

For Secure Data or Secure Voice if there is no overlap among the local and far-end Security Level settings and key classifications for the chosen Operational Mode and Keyset (see SCIP-230 or SCIP-232, Section 2.1.3.2), the Operational Mode is noted as one that has a security incompatibility and is not to be chosen. Processing again continues as specified in Section 2.2.2.3.2 (Case 2) where the terminals will attempt to choose another Operational Mode.

If the Access Control List (ACL) has been activated for the chosen Operational Mode and the chosen Keyset Type is supported by an ACL, the terminal performs the ACL test as specified in SCIP-230 or SCIP-232, Section 2.1.3.1.1. If the ACL test fails, the Operational Mode is noted as one for which access is denied and is not to be chosen. Processing then continues as specified in Section 2.2.2.3.2 (Case 2) where the terminals will attempt to choose another Operational Mode. If the ACL has not been activated for the chosen Operational Mode and/or the chosen Keyset Type is not supported by an ACL, the ACL check is skipped.

If all the above tests pass, the terminal shall verify that the received Parameters/Certificate Message just processed corresponds to (i.e., contains the same Operational Mode as) the last Parameters/Certificate Message it transmitted. If it does not, the terminal shall transmit a Parameters/Certificate Message corresponding to the one just processed. If the chosen Keyset is a Keyset Type with CSE, the Parameters/Certificate Message shall be encrypted as specified in SCIP-230 or SCIP-231, Section 4.1.4; or SCIP-232, Section 4.4, prior to transmission. The authentication information is displayed to the user, as defined for each specific Keyset Type in SCIP-230, Sections 2.1.1.4.2.3 and 2.1.1.8.1, SCIP-231, Section 2.1.3.4, or SCIP-232, Sections 2.1.1.4.1.4 and 2.1.1.8.1. If a PPK Keyset is chosen, processing proceeds as defined in Section 2.2.5.2 (no F(R) message is transmitted). Otherwise, processing proceeds as defined in Section 2.2.4.2 (if the F(R) has not yet been transmitted) or Section 2.2.4.3 (if the F(R) has already been transmitted).

2.2.4 F(R) Message

2.2.4.1 F(R) Message Definition

The format of the F(R) Message is shown in Table 2.2-5.
Table 2.2-5 F(R) Message - General Format

<table>
<thead>
<tr>
<th>Octets</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>8</td>
<td>MID</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>Source ID</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>Message Length</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Message Version</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Operational Mode</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Source ID</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>Keyset Type</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Source ID</td>
</tr>
<tr>
<td>9</td>
<td>0-N</td>
<td>Keyset ID Length</td>
</tr>
<tr>
<td>10</td>
<td>0-N</td>
<td>Keyset ID</td>
</tr>
<tr>
<td>11</td>
<td>0-N</td>
<td>F(R) Length</td>
</tr>
<tr>
<td>12</td>
<td>0-N</td>
<td>F(R)</td>
</tr>
</tbody>
</table>

N = Length of Keyset ID. L = Length of F(R) field.
• For the F(R) Message the value of the MID is 0x0004.
• The Message Length shall contain the actual length of the message body (including the length of the Message Length field itself but not including the length of the MID field) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 3 and the low order bit being bit 1 of octet 4.
• For the version of the F(R) Message defined in this version of the Signaling Plan, the value of the Message Version field is 0x00.
• The Operational Mode field shall contain the ID of the chosen Operational Mode. For the format and values of these IDs, see the definition of Operational Mode IDs in Section 2.2.2.1. The high order bit of the Operational Mode ID is placed in bit 8 of octet 6 and the low order bit of the Operational Mode ID is placed in bit 1 of octet 7.
• The Keyset Type field shall identify the type of the chosen Keyset. For the format and values of these Types, see the definition of Keyset Type in Section 2.2.2.1.
• The Keyset ID Length shall contain the actual length of the Keyset ID field (plus the length of the Keyset ID Length field itself) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 10 and the low order bit being bit 1 of octet 11.
• The Keyset ID field shall contain the ID of the chosen Keyset. Keyset IDs are unique to each Keyset Type. For each standard Keyset Type, the length and format of the corresponding Keyset ID are defined in Section 2.2.6.1.
• The F(R) Length shall contain the actual length of the F(R) field (including the length of the F(R) Length field itself) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of the first octet of the field and the low order bit being bit 1 of the second octet of the field.
• The F(R) field shall contain an F(R) corresponding to the chosen Keyset. The length, format and contents are unique to each key exchange type and are defined in Section 2.2.6.1 for each key exchange type.

2.2.4.2 F(R) Message Transmission

F(R) Message transmission is shown in Figure 2.2-7. At this point the Parameters/Certificate Message has been formatted and transmitted. If the far-end Parameters/Certificate Message arrives before the F(R) has been generated, the incoming Parameters/Certificate Message is first processed as described in Section 2.2.3.3.

If F(R) is not already available, F(R) generation proceeds to completion. An F(R) Message containing the F(R) for the chosen Keyset, and formatted as defined in Section 2.2.4.1, shall be transmitted to the far end. If the incoming Parameters/Certificate Message has already been processed, the terminal proceeds as defined in Section 2.2.4.3. Else the terminal waits until it receives the Parameters/Certificate Message from the far end, at which point it proceeds as defined in Section 2.2.3.3.
NOTES:
1. This path includes the case where the Parameters/Certificate Message for the selected Operational Mode and Keyset was received prior to entering the Wait for F(R) Generation state.
2. Note that if multiple Parameters/Certificate Messages must be transmitted, a subsequent Parameters/Certificate Message may be preceded by an F(R) Message that corresponds to the previous Parameters/Certificate Message. This F(R) Message is discarded.

Figure 2.2-7 F(R) Message Transmission
2.2.4.3 F(R) Message Reception

F(R) Message reception is shown in Figure 2.2-8. At this point the terminal has processed the received Parameters/Certificate Message for the chosen Operational Mode and has determined that the Operational Mode and its parameters, and the Certificate, are acceptable.

The terminal may begin processing the far end's F(R), for the chosen Operational Mode and Keyset, when it is received. This is discussed in Section 2.2.4.3.1. If a terminal receives the far end's F(R) before it has transmitted its own, it may begin processing the received F(R) in parallel with generating its own so long as this does not delay transmission of its own F(R). Note that multiple F(R) Messages may have been sent, but only one of them should have the chosen Operational Mode and Keyset.

Under exceptional conditions the terminal may receive another Parameters/Certificate Message at this point. Processing in this exception case is described in Section 2.2.4.3.2.

2.2.4.3.1 F(R) Message Received

Upon receipt of the F(R), the F(R) verification tests specified in SCIP-230, Section 2.1.1.4.3, SCIP-231, Section 2.1.5, or SCIP-232, Appendix F.3 are now performed. If the received F(R) fails any of these tests, the terminal shall execute Failed Call processing. If the tests pass, key generation is initiated, and signaling continues as defined in Section 2.2.5. The generation of the traffic key from the Certificate and the F(R) is defined in SCIP-230 or SCIP-232, Section 2.1.1.7; or SCIP-231, Section 2.1.6.

2.2.4.3.2 Parameters/Certificate Message Received

If a Parameters/Certificate Message is received, this indicates that the far end has determined that there are no compatible parameters, there is a security incompatibility, or there is an Access Control failure for the previously chosen Operational Mode, and is attempting to proceed using an alternate Operational Mode. In this case, the incoming Parameters/Certificate Message is processed as specified in Section 2.2.3.3.
2.2.5 Cryptosync Exchange

The third step in SCIP Call Setup is the exchange of Cryptosync Messages. Application IVs are exchanged together with encrypted data that permits the receiver to verify the negotiated parameters, the session key, and that encryption and decryption are operating properly.

Figure 2.2-8 F(R) Message Reception

NOTES:
1. This path includes the case where the F(R) Message for the chosen Operational Mode was received prior to entering the Wait for F(R) Message state.
2. This path includes the case where the Parameters/Certificate Message was received prior to entering the Wait for F(R) Message state.
3. These are the F(R) verification tests defined in SCIP-23x.
2.2.5.1 Cryptosync Message Definition

The format of the Cryptosync Message is shown in Table 2.2-6.

<table>
<thead>
<tr>
<th>Table 2.2-6 Cryptosync Message - General Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits (msb)</td>
</tr>
<tr>
<td>MID</td>
</tr>
<tr>
<td>0-msb</td>
</tr>
<tr>
<td>X-msb</td>
</tr>
<tr>
<td>Message Length</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>Message Version</td>
</tr>
<tr>
<td>X-msb</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>Application IV</td>
</tr>
<tr>
<td>X-msb</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>Packet Length</td>
</tr>
<tr>
<td>X-msb</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>Encrypted Packet (optional)</td>
</tr>
<tr>
<td>X-msb</td>
</tr>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

N = Length of Application IV. M = Length of Encrypted Packet.
• For the Cryptosync Message the value of the MID is 0x0008.
• The Message Length shall contain the actual length of the message body (including
 the length of the Message Length field itself but not including the length of the MID
 field) in octets. The value of the field shall be an unsigned binary integer with the
 high order bit being bit 8 of octet 3 and the low order bit being bit 1 of octet 4.
• For the version of the Cryptosync Message defined in this version of the Signaling
 Plan, the value of the Message Version field is 0x00.
• The IV Length shall contain the length of the Application IV field in octets (plus the
 length of the IV Length field itself). The value of the field shall be an unsigned
 binary integer with the high order bit being bit 8 of octet 6 and the low order bit being
 bit 1 of octet 7.
• The Application IV shall contain the IV to be used with the application that has been
 negotiated. Details of the length, format, and content are found in SCIP-230, Section
 3.5, SCIP-231, Section 3.3, or SCIP-232, Section 3.6. The msb of the IV (as defined
 in SCIP-23x) is placed in bit 8 of octet 8.
• The Packet Length shall contain the length of the Encrypted Packet in octets (plus the
 length of the Packet Length field itself). The value of the field shall be an unsigned
 binary integer with the high order bit being bit 8 of the first octet of the field and the
 low order bit being bit 1 of the second octet of the field.
• Inclusion of the Encrypted Packet is mandatory when the Cryptosync Message is
 used as part of SCIP call setup and Mode Change. The msb of the Encrypted Packet
 (as defined in SCIP-23x) is placed in Bit 8 of the first octet of the Encrypted Packet
 field. The length, the encryption algorithm and mode to be used, and the content and
 format of the plaintext data to be encrypted are defined in SCIP-230, Section 3.4,
 SCIP-231, Section 3.2, or SCIP-232, Section 3.5.
• The Encrypted Packet is not included when the Message is used for Two-Way
 Resync (Section 2.3.4).

2.2.5.2 Cryptosync Message Transmission

Cryptosync Message transmission during SCIP call setup is shown in Figure 2.2-9.

When the Traffic Encryption Key (TEK) has been generated or if a PPK Keyset is chosen, the
terminal shall format the data to be verified as defined in SCIP-230, Section 3.4, SCIP-231,
Section 3.2, or SCIP-232, Section 3.5. This data shall be encrypted (using a cryptographic
algorithm and mode defined in SCIP-23x).

If a CKL exists locally and the local CKL version is later than the CKL version in the received
Capabilities Message (see SCIP-230 or SCIP-232, Sections 2.1.2.1.2.1 and 2.1.2.3), the terminal
shall wait until it receives a Cryptosync Message from the far end. Otherwise, the terminal shall
transmit a Cryptosync Message, formatted as defined in Section 2.2.5.1, to the far end and wait
until it receives a Cryptosync Message from the far end. In either case, signaling proceeds as
defined in Section 2.2.5.3.
Figure 2.2-10 Cryptosync Message Transmission
2.2.5.3 Cryptosync Message Reception

Cryptosync Message reception during SCIP call setup is shown in Figure 2.2-10.

The terminal will process the far end's Cryptosync Message when it is received. This is discussed in Section 2.2.5.3.1. If a terminal receives the far end's Cryptosync Message before it has transmitted its own, it may begin processing the received Cryptosync Message in parallel with generating its own.

Under exceptional conditions the terminal may receive another Parameters/Certificate Message at this point. Processing in this exception case is described in Section 2.2.5.3.2.

2.2.5.3.1 Cryptosync Message Received

If a CKL exists locally and the local CKL version is later than the CKL version in the received Capabilities Message, one or more CKL Transfers shall be performed, as specified in Section 2.3.2.4, to transmit the local CKL to the far end. The terminal shall then transmit a Cryptosync Message, formatted as defined in Section 2.2.5.1, to the far end. Once transmission of the Cryptosync Message is complete, processing continues as follows.

The terminal shall verify the Encrypted Packet contained in the Cryptosync Message as specified in SCIP-230, Section 3.4.1, SCIP-231, Section 3.2.1, or SCIP-232, Section 3.5.1. If this check is not passed, the terminal shall execute Failed Call processing, defined in Section 2.3.2.3.1, with an Information Code of sync message verification failure.

For standard secure Operational Modes, the terminal shall then initiate the chosen application, using the exchanged Application IVs, as specified in Section 3.2.

Editor's Note: Note that as defined in Section 3.2, the application is not actually entered until all outstanding framed messages are acknowledged. In particular, the application is not entered until all frames of the Cryptosync Message have been acknowledged.
Figure 2.2-10 Cryptosync Message Reception

NOTES:
1. This path includes the case where the Cryptosync Message was received prior to entering the Wait for CS (i.e., Cryptosync) Message state.
2. This path includes the case where the Parameters/Certificate Message was received prior to entering the Wait for CS (i.e., Cryptosync) Message state.
4. The Action is set to "CKL Transfer".
5. The tests used to verify a Cryptosync Message are defined in SCIP-23x.
6. See Section 3. Note that per Section 2.1, the actual entry into the selected Operational Mode does not occur until all outstanding message frames (including those that contain the Cryptosync Message itself) have been acknowledged.
2.2.5.3.2 Parameters/Certificate Message Received

If a Parameters/Certificate Message is received, this indicates that the far end has determined that there are no compatible parameters, there is a security incompatibility, or there is an Access Control failure for the previously chosen Operational Mode, and is attempting to proceed using an alternate Operational Mode. In this case, the incoming Parameters/Certificate Message is processed as specified in Section 2.2.3.3.

2.2.6 Operational Mode and Keyset Type Specific Instantiations

This section defines the Operational Mode and Keyset Type specific use of fields in SCIP call setup and call control messages.

A conservative approach has been taken when determining what is generic to all standard messages and what is Operational Mode or Keyset Type specific. In general, a field or value is considered to be generic if it does not vary for the currently anticipated standard secure Operational Modes and Keyset Types.

Section 2.2.6.1 discusses Key Agreement specific fields and values, Section 2.2.6.2 discusses Secure Voice specific fields and values, Section 2.2.6.3 discusses Secure Data specific fields and values, Section 2.2.6.4 discusses Secure Electronic Rekey specific fields and values, and Section 2.2.6.5 discusses Clear MELP Voice specific fields and values.

2.2.6.1 Key Agreement Specifics

This section provides detailed information for setting Key Agreement specific message fields in SCIP call setup messages.

2.2.6.1.1 Capabilities and Extended Keysets List Messages

2.2.6.1.1 Type 1 FIREFLY Without CSE

In the Capabilities and Extended Keysets List Messages, a Type 1 Basic FIREFLY w/o CSE Entry in the keysets list is recognized by a value of 0x0001 in the Keyset Type field, and a Type 1 Enhanced FIREFLY w/o CSE Entry in the keysets list is recognized by a value of 0x0002 in the Keyset Type field. For both of these, each corresponding Keyset Parameters Entry has the format defined in Table 2.2-7(a).
Table 2.2-7(a) Keyset Parameters Entry – Type 1 Basic and Enhanced FF w/o CSE Format

<table>
<thead>
<tr>
<th>8 (msb)</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1 (lsb)</th>
<th>Bits Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>X X X X</td>
<td>X</td>
<td>X X X X</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Keyset ID</td>
<td></td>
</tr>
<tr>
<td>Nibble 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X X X X</td>
<td>X</td>
<td>X X X X</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Universal ID</td>
<td></td>
</tr>
<tr>
<td>Nibble 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X X X X</td>
<td>X</td>
<td>X X X X</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Universal Edition</td>
<td></td>
</tr>
<tr>
<td>Nibble 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X X X X</td>
<td>X</td>
<td>X X X X</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>CKL Version</td>
<td></td>
</tr>
<tr>
<td>Nibble 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The Keyset ID is treated as 6 nibbles. Each nibble contains an unsigned number from 0x0 to 0x9 with the high order bit of the number in bit 8 or 4 of the octet and the low order bit of the number in bit 5 or 1 of the octet. The upper 4 nibbles shall contain the Universal ID with the first digit of the Universal ID in Nibble 1 and the last digit of the Universal ID in Nibble 4. The lower 2 nibbles shall contain the Universal Edition with the first digit of the Edition in Nibble 5 and the second digit of the Edition in Nibble 6.
- The CKL Version shall be treated as an 8 bit unsigned number with the high order bit of the Version number in bit 8 of the octet and the low order bit of the Version number in bit 1 of the octet. The CKL Version shall be set to 0x00 if no CKL is resident locally in the terminal. See SCIP-230, Section A.2 for additional details pertaining to the CKL Version.

2.2.6.1.1.2 Type 1 FIREFLY With CSE

In the Capabilities and Extended Keys List Messages, a Type 1 Basic FIREFLY w/CSE Entry in the keysets list is recognized by a value of 0x0004 in the Keyset Type field, and a Type 1 Enhanced FIREFLY w/CSE Entry in the keysets list is recognized by a value of 0x0007 in the Keyset Type field. For both of these, each corresponding Keyset Parameters Entry has the format defined in Table 2.2-7(b).
Table 2.2-7(b) Keyset Parameters Entry – Type 1 Basic and Enhanced FF w/CSE Format

<table>
<thead>
<tr>
<th>Bit 8 (msb)</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1 (lsb)</th>
<th>Bits Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Keyset ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>Nibble 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>Nibble 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Universal ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>Nibble 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Universal Edition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>CSE SPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>8</td>
</tr>
<tr>
<td>CKL Version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The Keyset ID is treated as 6 nibbles. Each nibble contains an unsigned number from 0x0 to 0x9 with the high order bit of the number in bit 8 or 4 of the octet and the low order bit of the number in bit 5 or 1 of the octet. The upper 4 nibbles shall contain the Universal ID with the first digit of the Universal ID in Nibble 1 and the last digit of the Universal ID in Nibble 4. Nibbles 5 and 6 shall contain the Universal Edition with the first digit of the Universal Edition in Nibble 5 and the second digit of the Universal Edition in Nibble 6.

- The CSE Security Parameters Index (SPI) is a 32-bit value defined in SCIP-230, Section 2.1.1.3.1.2. Its most significant bit, as defined in SCIP-230, Section 2.1.1.3.1.2.2, shall be placed in bit 8 of octet 4, and its least significant bit shall be placed in bit 1 of octet 7.

- The CKL Version shall be treated as an 8 bit unsigned number with the high order bit of the Version number in bit 8 of the octet and the low order bit of the Version number in bit 1 of the octet. The CKL Version shall be set to 0x00 if no CKL is resident locally in the terminal. See SCIP-230, Section A.2 for additional details pertaining to the CKL Version.
2.2.6.1.3 Type 1 U.S. Generic PPK Without CSE

In the Capabilities and Extended Keysets List Messages, a Type 1 U.S. Generic PPK w/o CSE Entry in the keysets list is recognized by a value of 0x0008 in the Keyset Type field. The corresponding Keyset Parameters Entry has the format defined in Table 2.2-7(c).

<table>
<thead>
<tr>
<th>Table 2.2-7(c) Keyset Parameters Entry – Type 1 U.S. Generic PPK w/o CSE Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyset ID</td>
</tr>
<tr>
<td>X X X X X X X X 1</td>
</tr>
<tr>
<td>X X X X X X X X 2</td>
</tr>
<tr>
<td>X X X X X X X X 3</td>
</tr>
<tr>
<td>X X X X X X X X 4</td>
</tr>
<tr>
<td>PPK SPI</td>
</tr>
</tbody>
</table>

• The Keyset ID is the PPK Security Parameters Index (SPI), a 32-bit value defined in SCIP-230, Section 2.1.1.2.2. Its most significant bit, as defined in SCIP-230, Section 2.1.1.2.2.3, shall be placed in bit 8 of octet 1, and its least significant bit shall be placed in bit 1 of octet 4.

2.2.6.1.4 ECMQV/AES Without CSE – Phase 1

In the Capabilities and Extended Keysets List Messages, an ECMQV/AES w/o CSE – Phase 1 Entry in the keysets list is recognized by a value of 0x0009 in the Keyset Type field. The corresponding Keyset Parameters Entry has the format defined in Table 2.2-7(d).

<table>
<thead>
<tr>
<th>Table 2.2-7(d) Keyset Parameters Entry – ECMQV/AES w/o CSE – Phase 1 Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyset ID</td>
</tr>
<tr>
<td>X X X X X X X X</td>
</tr>
</tbody>
</table>

• The Keyset ID is an 8-bit value defined in SCIP-231, Section 2.1.1.2. Its most significant bit, as defined in SCIP-231, Section 2.1.1.2, shall be placed in bit 8 of octet 1, and its least significant bit shall be placed in bit 1 of octet 1.
2.2.6.1.1.5 ECMQV/AES With CSE – Phase 1

In the Capabilities and Extended Keysets List Messages, an ECMQV/AES w/CSE – Phase 1 Entry in the keysets list is recognized by a value of 0x000A in the Keyset Type field. The corresponding Keyset Parameters Entry has the format defined in Table 2.2-7(e).

Table 2.2-7(e) Keyset Parameters Entry – ECMQV/AES w/CSE – Phase 1 Format

<table>
<thead>
<tr>
<th>(msb)</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1 (lsb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyset ID</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CSE SPI</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

- The Keyset ID is an 8-bit value defined in SCIP-231, Section 2.1.1.2. Its most significant bit, as defined in SCIP-231, Section 2.1.1.2, shall be placed in bit 8 of octet 1, and its least significant bit shall be placed in bit 1 of octet 1.
- The CSE Security Parameters Index (SPI) is a 32-bit value defined in SCIP-231, Section 2.1.2.1.1.2. Its most significant bit, as defined in SCIP-231, shall be placed in bit 8 of octet 4, and its least significant bit shall be placed in bit 1 of octet 7.

2.2.6.1.1.6 NATO ECMQV/AES Without CSE

In the Capabilities and Extended Keysets List Messages, a NATO ECMQV/AES w/o CSE Entry in the keysets list is recognized by a value of 0x000B in the Keyset Type field. The corresponding Keyset Parameters Entry has the format defined in Table 2.2-7(f).
Table 2.2-7(f) Keyset Parameters Entry – NATO ECMQV/AES w/o CSE Format

<table>
<thead>
<tr>
<th>Bits (msb)</th>
<th>Octets (lsb)</th>
<th>Keyset ID</th>
<th>Universal ID</th>
<th>Universal Edition</th>
<th>CKL Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>X X X X X X</td>
</tr>
</tbody>
</table>

- The Keyset ID is treated as 6 nibbles. Each nibble contains an unsigned number from 0x0 to 0x9 with the high order bit of the number in bit 8 or 4 of the octet and the low order bit of the number in bit 5 or 1 of the octet. The upper 4 nibbles shall contain the Universal ID with the first digit of the Universal ID in Nibble 1 and the last digit of the Universal ID in Nibble 4. The lower 2 nibbles shall contain the Universal Edition with the first digit of the Edition in Nibble 5 and the second digit of the Edition in Nibble 6.
- The CKL Version shall be treated as an 8 bit unsigned number with the high order bit of the Version number in bit 8 of the octet and the low order bit of the Version number in bit 1 of the octet. The CKL Version shall be set to 0x00 if no CKL is resident locally in the terminal. See SCIP-232, Section E.3 for additional details pertaining to the CKL Version.

2.2.6.1.1.7 NATO ECMQV/AES With CSE

In the Capabilities and Extended Keysets List Messages, a NATO ECMQV/AES w/CSE Entry in the keysets list is recognized by a value of 0x000C in the Keyset Type field. The corresponding Keyset Parameters Entry has the format defined in Table 2.2-7(g).
Table 2.2-7(g) Keyset Parameters Entry – NATO ECMQV/AES w/CSE Format

<table>
<thead>
<tr>
<th>Octets</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Keyset ID

- The Keyset ID is treated as 6 nibbles. Each nibble contains an unsigned number from 0x0 to 0x9 with the high order bit of the number in bit 8 or 4 of the octet and the low order bit of the number in bit 5 or 1 of the octet. The upper 4 nibbles shall contain the Universal ID with the first digit of the Universal ID in Nibble 1 and the last digit of the Universal ID in Nibble 4. Nibbles 5 and 6 shall contain the Universal Edition with the first digit of the Universal Edition in Nibble 5 and the second digit of the Universal Edition in Nibble 6.

CSE SPI

- The CSE Security Parameters Index (SPI) is a 32-bit value defined in SCIP-232, Section 2.1.1.3.1.2. Its most significant bit, as defined in SCIP-232, Section 2.1.1.3.1.2.2, shall be placed in bit 8 of octet 4, and its least significant bit shall be placed in bit 1 of octet 7.

CKL Version

- The CKL Version shall be treated as an 8 bit unsigned number with the high order bit of the Version number in bit 8 of the octet and the low order bit of the Version number in bit 1 of the octet. The CKL Version shall be set to 0x00 if no CKL is resident locally in the terminal. See SCIP-232, Section E.3 for additional details pertaining to the CKL Version.
2.2.6.1.1.8 NATO PPK/AES Without CSE

In the Capabilities and Extended Keysets List Messages, a NATO PPK/AES w/o CSE Entry in the keysets list is recognized by a value of 0x000D in the Keyset Type field. The corresponding Keyset Parameters Entry has the format defined in Table 2.2-7(h).

Table 2.2-7(h) Keyset Parameters Entry – NATO PPK/AES w/o CSE Format

<table>
<thead>
<tr>
<th>Bits (msb)</th>
<th>Octets</th>
<th>Keyset ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>X X X X</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>X X X X</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>X X X X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>X X X X</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

- The Keyset ID is the PPK Security Parameters Index (SPI), a 32-bit value defined in SCIP-232, Section 2.1.1.2.2. Its most significant bit, as defined in SCIP-232, Section 2.1.1.2.2.3, shall be placed in bit 8 of octet 1, and its least significant bit shall be placed in bit 1 of octet 4.

2.2.6.1.1.9 Extended Keysets List Support

In the Capabilities and Extended Keysets List Messages, an Extended Keysets List Support Entry in the keysets list is recognized by a value of 0x07FF in the Keyset Type field. The terminal shall include an Extended Keysets List Support Entry as the last keysets list entry in the keysets list, if the terminal supports the ability to receive and optionally transmit the Extended Keysets List Message. Note that this Keyset Type is listed even if the terminal can send all of its keysets in the Capabilities Message without surpassing the message length limitation specified in Section 2.2.1.4. The Additional Keysets parameter of the Extended Keysets List Support Keyset Type indicates if additional keysets actually need to be sent. The corresponding Keyset Parameters Entry has the format defined in Table 2.2-7(i).

Table 2.2-7(i) Keyset Parameters Entry – Extended Keysets List Support Format

<table>
<thead>
<tr>
<th>Bits (msb)</th>
<th>Octets</th>
<th>Additional Keysets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

-
• The Additional Keysets parameter shall be set to 0x01 if the terminal has additional keysets to offer in an Extended Keysets List Message. The Additional Keysets parameter shall be set to 0x00 if the terminal does not have additional keysets to offer in an Extended Keysets List Message.

2.2.6.1.2 Parameters/Certificate Message

In the Parameters/Certificate Message, a Certificate has the format defined in Table 2.2-8.

Table 2.2-8 Certificate Field Format

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th></th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(msb)</td>
<td>(lsb)</td>
<td>Octets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certificate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X X X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X X X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

K = Length of Certificate.

2.2.6.1.2.1 Type 1 FIREFLY

In the Parameters/Certificate Message, a Type 1 FIREFLY Keyset ID has the same format as shown for the Capabilities Message. If the negotiated Keyset Type is Basic FF, the terminal shall process a received Certificate using the Basic FF rules. If the negotiated Keyset Type is Enhanced FF, the terminal shall process a received Certificate using the Enhanced FF rules. Processing rules for both Keyset Types are specified in SCIP-230, Section 2.1.1.4.

The Certificate field shall contain CC1/CC2 for the negotiated Keyset. CC1 shall precede CC2. The most significant bit of CC1 (as defined in the arithmetic calculation) shall be placed in bit 8 of the first octet, and the least significant bit of CC2 shall be placed in bit 1 of the last octet.

2.2.6.1.2.2 Type 1 U.S. Generic PPK

In the Parameters/Certificate Message, a Type 1 U.S. Generic PPK Keyset ID has the same format as shown for the Capabilities Message. The Certificate Length field has a value of 0x0002, and the Certificate field is not present in the message.

2.2.6.1.2.3 ECMQV/AES – Phase 1

In the Parameters/Certificate Message, the ECMQV/AES – Phase 1 Keyset ID has the same format as shown for the Capabilities Message. If the negotiated Keyset Type is ECMQV/AES –
Phase 1, the terminal shall process a received Certificate using the ECMQV rules specified in SCIP-231, Section 2.1.3.3.

The Certificate field shall contain the ASN.1/DER encoded Certificate contents defined in SCIP-231, Section 2.1.3.3.1. The most significant bit of the ASN.1/DER encoded initial SEQUENCE (see SCIP-231, Appendix A) shall be placed in bit 8 of the first octet, and the least significant bit of the ASN.1/DER encoded Signature Value at the end of the final SEQUENCE shall be placed in bit 1 of the last octet.

2.2.6.1.2.4 NATO ECMQV/AES

In the Parameters/Certificate Message, a NATO ECMQV/AES Keyset ID has the same format as shown for the Capabilities Message. Rules for processing a received Certificate are specified in SCIP-232, Section 2.1.1.4.

The Certificate field shall contain CC1/CC2 for the negotiated Keyset. CC1 shall precede CC2. The most significant bit of CC1 (as defined in the arithmetic calculation) shall be placed in bit 8 of the first octet, and the least significant bit of CC2 shall be placed in bit 1 of the last octet.

2.2.6.1.2.5 NATO PPK/AES

In the Parameters/Certificate Message, a NATO PPK/AES Keyset ID has the same format as shown for the Capabilities Message. The Certificate Length field has a value of 0x0002, and the Certificate field is not present in the message.

2.2.6.1.3 F(R) Message

In the F(R) Message, the F(R) field has the format defined in Table 2.2-9.

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(msb)</td>
<td>Octets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F(R)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| X X X X X X X X X | "\(|L)

L = Length of F(R).
2.2.6.1.3.1 Type 1 FIREFLY

In the F(R) Message, a Type 1 FIREFLY Keyset ID has the same format as shown for the Capabilities Message, and a FIREFLY F(R), calculated as defined in SCIP-230, Section 2.1.1.6, is included in the F(R) field. If the Keyset Type of the negotiated Keyset is Basic FF, the field shall contain a Basic FF F(R). If the Keyset Type of the negotiated Keyset is Enhanced FF, the field shall contain an Enhanced FF F(R).

The F(R) field shall contain either a Basic FF F(R) or an Enhanced FF F(R) for the Universal Edition negotiated. In terms of SCIP signaling, the only difference is the length of the field. The F(R)'s most significant bit (as defined in SCIP-230, Section 2.1.1.6) shall be placed in bit 8 of the first octet, and its least significant bit shall be placed in bit 1 of the L'th octet.

2.2.6.1.3.2 Type 1 U.S. Generic PPK

The F(R) Message does not apply to the Type 1 U.S. Generic PPK Keyset Type.

2.2.6.1.3.3 ECMQV/AES – Phase 1

In the F(R) Message, the ECMQV/AES – Phase 1 Keyset ID has the same format as shown for the Capabilities Message, and an ECMQV F(R), calculated as defined in SCIP-231, Section 2.1.4, is included in the F(R) field. The F(R) field shall contain the ECMQV F(R) and a Nonce. The most significant bit of the first octet of the F(R) (as defined in SCIP-231, Section 2.1.4.3) shall be placed in bit 8 of the first octet, and the least significant bit of the Nonce shall be placed in bit 1 of the L'th octet.

2.2.6.1.3.4 NATO ECMQV/AES

In the F(R) Message, a NATO ECMQV/AES Keyset ID has the same format as shown for the Capabilities Message, and an ECMQV F(R), calculated as defined in SCIP-232, Section 2.1.1.6, is included in the F(R) field. The F(R) field shall contain an ECMQV F(R) for the Universal Edition negotiated. In terms of SCIP signaling, the only difference is the length of the field. The ECMQV F(R)'s most significant bit (as defined in SCIP-232, Section 2.1.1.6) shall be placed in bit 8 of the first octet, and its least significant bit shall be placed in bit 1 of the L'th octet.

2.2.6.1.3.5 NATO PPK/AES

The F(R) Message does not apply to the NATO PPK/AES Keyset Type.
2.2.6.2 Secure Voice Specifics

Secure Voice is chosen by negotiating Operational Mode 0x0001.

The only Operational Mode specific field is the Operational Mode Parameters for Secure Voice in the Parameters/Certificate Message. This field has three subfields: Security Levels, Secure Voice Options List Length, and a Secure Voice Options List. The format of this field for Secure Voice is given in Table 2.2-10. Note that there may be multiple Secure Voice Options within this field.

Table 2.2-10 Operational Mode Parameters – Secure Voice

<table>
<thead>
<tr>
<th>Octets</th>
<th>Description</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Security Levels</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Secure Voice Options List Length</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Secure Voice Options List</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Source ID</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>First Secure Voice Option ID</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>L'th Secure Voice Option ID</td>
<td>4+2L-2</td>
</tr>
<tr>
<td>2</td>
<td>L = Number of Secure Voice Option Entries</td>
<td>5+2L-2</td>
</tr>
</tbody>
</table>

- The Security Levels field defines a range of security levels compatible with the Operational Mode. The upper nibble in octet 1 shall identify the Maximum Security Level, and the lower nibble shall identify the Minimum Security Level for that combination. The nibble values and corresponding Security Levels are defined in Table 2.2-11. If a Type 1 Keyset is negotiated, only interoperable security levels in the Type 1 Keyset ID Family shall be offered. If a Non-Type 1 Keyset is negotiated, only interoperable security levels in the Non-Type 1 Keyset ID Family shall be offered.
Table 2.2-11 Interoperable Security Levels

<table>
<thead>
<tr>
<th>Nibble Values</th>
<th>Definition</th>
<th>Keyset ID Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xF</td>
<td>reserved</td>
<td></td>
</tr>
<tr>
<td>0xE</td>
<td>reserved</td>
<td></td>
</tr>
<tr>
<td>0xD</td>
<td>reserved</td>
<td>Non-Type 1</td>
</tr>
<tr>
<td>0xC</td>
<td>reserved</td>
<td></td>
</tr>
<tr>
<td>0xB</td>
<td>Protected</td>
<td></td>
</tr>
<tr>
<td>0xA</td>
<td>reserved</td>
<td></td>
</tr>
<tr>
<td>0x9</td>
<td>reserved</td>
<td></td>
</tr>
<tr>
<td>0x8</td>
<td>reserved</td>
<td></td>
</tr>
<tr>
<td>0x7</td>
<td>reserved4</td>
<td></td>
</tr>
<tr>
<td>0x6</td>
<td>Top Secret</td>
<td>Type 1</td>
</tr>
<tr>
<td>0x5</td>
<td>Secret</td>
<td></td>
</tr>
<tr>
<td>0x4</td>
<td>Confidential</td>
<td></td>
</tr>
<tr>
<td>0x3</td>
<td>reserved3</td>
<td></td>
</tr>
<tr>
<td>0x2</td>
<td>Restricted</td>
<td></td>
</tr>
<tr>
<td>0x1</td>
<td>Unclassified</td>
<td></td>
</tr>
<tr>
<td>0x0</td>
<td>reserved1</td>
<td></td>
</tr>
</tbody>
</table>

- The Secure Voice Operational Mode Parameters field shall contain a Secure Voice Options List Length. This shall contain the actual length, in octets, of the Secure Voice Options List (plus the length of the Secure Voice Options List Length itself). The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 2 and the low order bit being bit 1 of octet 3.
- The Secure Voice Options List shall contain the IDs of the supported options for the chosen Operational Mode. Each ID is 2 octets per option. The format of each ID is as follows. The high order 5 bits of the first octet identify the Source where the Voice Option is defined. Currently identified Sources and their IDs are defined in Section 2.5.1. After the Source ID, the next 11 bits identify a unique Secure Voice Option (see Table 2.2-12). The high order bit of the Option ID is placed in bit 8 of the first octet of the Voice Options List Entry, and the low order bit of the Option ID is placed in bit 1 of the second octet of the Voice Options List Entry. Secure Voice Options are listed in order of preference, and the first option on the Initiator’s List that is also supported by the Responder shall be chosen.
Table 2.2-12 Secure Voice Options

<table>
<thead>
<tr>
<th>Option ID</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0002</td>
<td>Secure 2400 bps MELP Voice – Blank & Burst (DTX)</td>
</tr>
<tr>
<td>0x0003</td>
<td>Secure 2400 bps MELP Voice – Blank & Burst (FCT)</td>
</tr>
<tr>
<td>0x0004</td>
<td>Secure MELP Voice – Burst w/o Blank (DTX)</td>
</tr>
<tr>
<td>0x0005</td>
<td>Secure MELP Voice – Burst w/o Blank (FCT)</td>
</tr>
<tr>
<td>0x0009</td>
<td>Reserved for compatibility with legacy terminals</td>
</tr>
<tr>
<td>0x000E</td>
<td>Reserved for Secure G.729F Voice – Burst w/o Blank (DTX)</td>
</tr>
<tr>
<td>0x000F</td>
<td>Secure G.729D Voice – Burst w/o Blank (FCT)</td>
</tr>
<tr>
<td>0x1800</td>
<td>Secure Advanced Multi-Band Excitation (AMBE) Voice</td>
</tr>
</tbody>
</table>

2.2.6.2.1 Secure MELP and Secure G.729D Voice Options

The Secure MELP and Secure G.729D Voice applications are defined in Section 3.3 of this Signaling Plan. Two options are defined for Secure MELP Voice – Blank and Burst, and Burst w/o Blank. Only one option is defined for Secure G.729D Voice – Burst w/o Blank. Secure G.729F Voice is TBSL.

2.2.6.2.2 Secure AMBE Voice Specific Option

Secure Advanced Multi-Band Excitation (AMBE) Voice, as indicated by the Source bits, is a General Dynamics defined Operational Mode.

2.2.6.3 Secure Data Specifics

Two variants of secure data Operational Modes are defined. Secure Data, specified in Section 2.2.6.3.1, is chosen by negotiating Operational Mode 0x0002. Enhanced Secure Data, specified in Section 2.2.6.3.2, is chosen by negotiating Operational Mode 0x0003. The difference between the Operational Modes is that Secure Data has one set of Security Level values that apply to all data options offered, while Enhanced Secure Data has one set of Security Level values for each data option offered.

During call setup, one of the two secure data Operational Modes in the Capabilities Messages is first negotiated and then the associated Operational Mode Parameters in the Parameters/Certificate Messages are negotiated. During Mode Change, the negotiation takes place with the Mode Change Request and Response Messages. It is recommended that if a terminal offers both secure data Operational Modes in the Capabilities Message that Enhanced
Secure Data be offered first. Otherwise, Enhanced Secure Data may never be negotiated since terminals will offer the SCIP MER data application in Secure Data.

The data options listed in Table 2.2-13 may be used for multiple data applications. For example, Fax via Secure Reliable Transport Asynchronous Data, Chat via Secure Reliable Transport Asynchronous Data, etc., may be defined as additional data options in the future. These data options may be listed in the Operational Mode Parameters associated with the Secure Data, Enhanced Secure Data, or both Operational Mode(s).

Table 2.2-13 Secure Data/Enhanced Secure Data Options

<table>
<thead>
<tr>
<th>Option ID</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0002</td>
<td>Secure Best Effort Transport Asynchronous Data without error extension</td>
</tr>
<tr>
<td>0x0004</td>
<td>Secure Reliable Transport Asynchronous Data without error extension</td>
</tr>
<tr>
<td>0x0005</td>
<td>Secure Reliable Transport Asynchronous Data with error extension</td>
</tr>
</tbody>
</table>

Secure data applications are defined in Section 3.4 of this Signaling Plan. The use of error extension applies to the cryptography, as defined in SCIP-230, Section 4.1.2, or SCIP-232, Section 4.2.1, and is transparent to the signaling.

2.2.6.3.1 Secure Data Operational Mode Parameters

The Operational Mode Parameters field for Secure Data has three subfields: Security Levels, Secure Data Options List Length, and a Secure Data Options List. The format of this field is given in Table 2.2-14. The Secure Data format allows only one Security Level range for all Option IDs. This limits all offered Secure Data Options to one Security Level range. Note that there may be multiple Secure Data Options within this field.
Table 2.2-14 Operational Mode Parameters – Secure Data

<table>
<thead>
<tr>
<th>Bits</th>
<th></th>
<th>Security Levels</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Security Levels</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Octets</td>
<td></td>
<td>Max</td>
<td>Min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X X X X X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Secure Data Options List Length

<table>
<thead>
<tr>
<th>Bits</th>
<th></th>
<th>Source ID</th>
<th>First Secure Data Option ID</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X X X X X</td>
<td>X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits</th>
<th></th>
<th>Source ID</th>
<th>L'th Secure Data Option ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X X X X X</td>
<td>X X X X X</td>
</tr>
</tbody>
</table>

L = Number of Secure Data Option Entries.

- The Security Levels field defines a range of security levels compatible with the Operational Mode. The upper nibble in octet 1 shall identify the Maximum Security Level, and the lower nibble shall identify the Minimum Security Level for that combination. The nibble values and corresponding Security Levels are defined in Table 2.2-11. If a Type 1 Keyset is negotiated, only interoperable security levels in the Type 1 Keyset ID Family shall be offered. If a Non-Type 1 Keyset is negotiated, only interoperable security levels in the Non-Type 1 Keyset ID Family shall be offered.

- The Secure Data Operational Mode Parameters field shall contain a Secure Data Options List Length. This shall contain the actual length, in octets, of the Secure Data Options List (plus the length of the Secure Data Options List Length itself). The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 2 and the low order bit being bit 1 of octet 3.

- The Secure Data Options List shall contain the IDs of the supported options for the chosen Operational Mode. Each ID is 2 octets per option. The format of each ID is as follows. The high order 5 bits of the first octet identify the Source where the Data Option is defined. Currently identified Sources and their IDs are defined in Section 2.5.1. After the Source ID, the next 11 bits identify a unique Secure Data Option (see Table 2.2-13). The high order bit of the Option ID is placed in bit 8 of the first octet of the Data Options List Entry, and the low order bit of the Option ID is placed in bit...
1 of the second octet of the Data Options List Entry. Secure Data Options are listed in order of preference, and the first option on the Initiator’s List that is also supported by the Responder shall be chosen.

2.2.6.3.2 Enhanced Secure Data Operational Mode Parameters

The Operational Mode Parameters field for Enhanced Secure Data, shown in Table 2.2-15(a), has two subfields in each Enhanced Secure Data Option Entry as shown in Table 2.2-15(b): Option ID and Security Level. This added flexibility allows all offered Enhanced Secure Data Options to be at different Security Level ranges, since Enhanced Secure Data Options may have different security requirements. Note that there may be multiple Enhanced Secure Data Options within this field.

Table 2.2-15(a) Operational Mode Parameters – Enhanced Secure Data

<table>
<thead>
<tr>
<th>Octets</th>
<th>8 7 6 5 4 3 2 1</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(msb)</td>
<td>(lsb)</td>
</tr>
</tbody>
</table>

First Enhanced Secure Data Option Entry

\[\cdots \]

L'th Enhanced Secure Data Option Entry

\[L = \text{Number of Enhanced Secure Data Option Entries.} \]

Table 2.2-15(b) Enhanced Secure Data Option Entry

<table>
<thead>
<tr>
<th>Octets</th>
<th>8 7 6 5 4 3 2 1</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(msb)</td>
<td>(lsb)</td>
</tr>
</tbody>
</table>

Enhanced Secure Data Option ID

\[X-\text{msb} \ X \ X \ X \ X \ X \ X \ X \]

Source ID

\[X \ X \ X \ X \ X \ X \ X \ X \ X-\text{lsb} \]

Enhanced Secure Data Security Level

\[X \ X \ X \ X \ X \ X \ X \]

Max

\[X \ X \ X \ X \ X \ X \ X \]

Min

* The Enhanced Secure Data Option ID field shall contain the ID of the supported option for the chosen Operational Mode. Each ID is 2 octets per option. The format of each ID is as follows. The high order 5 bits of the first octet identify the Source where the Data Option is defined. Currently identified Sources and their IDs are defined in Section 2.5.1. After the Source ID, the next 11 bits identify a unique Enhanced Secure Data Option (see Table 2.2-13). The high order bit of the Option ID is placed in bit 8 of the first octet, and the low order bit of the Option ID is placed in bit 1 of the second octet. Enhanced Secure Data Options are listed in order of...
preference, and the first option on the Initiator’s List that is also supported by the Responder shall be chosen.

- The Enhanced Secure Data Security Level field defines a range of security levels compatible with the Enhanced Secure Data Option ID. The upper nibble shall identify the Maximum Security Level, and the lower nibble shall identify the Minimum Security Level for that combination. The nibble values and corresponding Security Levels are defined in Table 2.2-11. If a Type 1 Keyset is negotiated, only interoperable security levels in the Type 1 Keyset ID Family shall be offered. If a Non-Type 1 Keyset is negotiated, only interoperable security levels in the Non-Type 1 Keyset ID Family shall be offered.

2.2.6.4 Secure Electronic Rekey Specifics

Secure Electronic Rekey is chosen by negotiating Operational Mode 0x000E.

The only Operational Mode specific field is the Operational Mode Parameters for Secure Electronic Rekey in the Parameters/Certificate Message. This field has three subfields: Security Levels, Electronic Rekey Options List Length, and an Electronic Rekey Options List. The format of this field for Electronic Rekey is given in Table 2.2-16.

Table 2.2-16 Operational Mode Parameters – Secure Electronic Rekey

<table>
<thead>
<tr>
<th>Security Levels</th>
<th>Electronic Rekey Options List Length</th>
<th>Electronic Rekey Options List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Min</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X-msb</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
| L = Number of Electronic Rekey Option Entries.

\[L = \text{Number of Electronic Rekey Option Entries.} \]
• The Security Levels field defines a range of security levels compatible with the Operational Mode. The Maximum and Minimum Security Levels shall be set as specified in SCIP-230 or SCIP-232, Section 2.1.3.2. The upper nibble in octet 1 shall contain the Maximum Security Level, and the lower nibble shall contain the Minimum Security Level. The nibble values and corresponding Security Levels are defined in Table 2.2-11. Only interoperable security levels in the Type 1 Keyset ID Family shall be offered.

• The Secure Electronic Rekey Operational Mode Parameters field shall contain an Electronic Rekey Options List Length. This shall contain the actual length, in octets, of the Electronic Rekey Options List (plus the length of the Electronic Rekey Options List Length itself). The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 2 and the low order bit being bit 1 of octet 3.

• The Electronic Rekey Options List shall contain the IDs of the supported options for Electronic Rekey. Each ID is 2 octets per option. The format of each ID is as follows. The high order 5 bits of the first octet identify the Source where the Rekey Option is defined. Currently identified Sources and their IDs are defined in Section 2.5.1. After the Source ID, the next 11 bits identify a unique Electronic Rekey Option (see Table 2.2-17). The high order bit of the Option ID is placed in bit 8 of the first octet of the Rekey Options List Entry, and the low order bit of the Option ID is placed in bit 1 of the second octet of the Rekey Options List Entry. Electronic Rekey Options are listed in order of preference, and the first option on the Initiator’s List that is also supported by the Responder shall be chosen.

<table>
<thead>
<tr>
<th>Option ID</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0004</td>
<td>Rekey via secure RT messages w/o error extension, w/o 32-bit CRC</td>
</tr>
<tr>
<td>0x0006</td>
<td>Rekey via secure RT messages w/o error extension, with 32-bit CRC</td>
</tr>
</tbody>
</table>

The Electronic Rekey application is defined in Section 4 of this Signaling Plan. The Rekey APDUs are encrypted then encapsulated in the Rekey Message structure defined in Section 4.2. Data ordering and encryption are specified in SCIP-230, Section 6.2, or SCIP-232, Appendix E.2. Error extension is not used. For Rekey Option 0x0006 (with 32-bit CRC), the CRC check bits are computed prior to encryption as specified in SCIP-230, Section 6.2.1, or SCIP-232, Appendix E.2.1. The Rekey Messages are transported via the reliable message transport mechanisms specified in Section 2.1.

2.2.6.5 Clear MELP Voice Specifics

Clear MELP Voice is chosen by negotiating Operational Mode 0x0004 and is defined in Section 3.3.1.3 of this Signaling Plan. There is no Parameters/Certificate Exchange, F(R) Exchange, or Cryptosync Exchange.
2.3 SCIP Call Control Signaling

When invoked, either by an internal indication or a user-initiated request, the terminal executes Call Control signaling to perform such functions as terminating a call, changing the application, alerting the far-end terminal, and cryptographic resynchronization. This section specifies the signaling for each of the Call Control functions and the interaction between each Call Control function and the applications active at the time that the Call Control function is executed. Some Call Control functions, such as Connection Terminate, may be executed at any time; during application traffic processing, during Call Setup, or even during Call Control processing. Other Call Control functions, such as Mode Change, are only performed during secure application traffic processing.

Call Control signaling involves four different messages: Notification, Mode Change Request, Mode Change Response, and Cryptosync. The Notification Message, with the Action set to Connection Terminate, Native Clear Voice, Secure Update, or Connection Idle, has a higher priority and upon receipt shall interrupt Mode Change, Two-Way Resync, CKL Transfer, Secure Dial, or Attention processing. The priority scheme of the Notification Message is specified in Section 2.3.2. The remaining Call Control messages, Mode Change Request, Mode Change Response, Cryptosync, and Notification with the Action set to CKL Transfer, Secure Dial, or Attention, shall be processed on a first come first served basis.

Call Control messages use the same framed transmission/reception format as specified in Section 2.1.

2.3.1 Call Control Timelines

Examples of Call Control signaling time lines are shown in Figures 2.3-1(a), 2.3-1(b), 2.3-1(c), 2.3-1(d), and 2.3-1(e). Call Control Messages are sent as framed traffic and may interrupt full bandwidth traffic. Note that these figures are presented from the Message Layer only, thus ESCAPEs, REPORTs, SOMs, and EOMs are not shown. Refer to Figure 2.1-1(a) for framed and Figure 2.1-1(b) for full bandwidth Transport Layer operations. Processing of Call Control Messages will result in terminals going to either framed or full bandwidth formats. If a terminal is required to enter application traffic, the processing of Section 3 applies. Note that re-entering a full bandwidth application without the benefit of Cryptosync means that the terminals will not transmit FILLER.

Examples of Notification Message signaling time lines are shown in Figures 2.3-1(a), 2.3-1(b), and 2.3-1(c). The examples depicted do not contain any errors, thus require no retransmissions. Figure 2.3-1(a) is the case where transmitting/receiving the Notification Message (specifically for the Actions set to Connection Terminate, Native Clear Voice, Secure Update, or Connection Idle) from full bandwidth traffic results in both terminals going to framed operation.
Figure 2.3-1(a) Notification Message Signaling Time Line (Full Bandwidth to Framed)

Figure 2.3-1(b) is the case where transmitting/receiving the Notification Message (for any of the Actions) from framed operation does not cause the terminal to transition from framed operation.

Figure 2.3-1(b) Notification Message Signaling Time Line (Framed to Framed)

Figure 2.3-1(c) is the case where after transmitting/receiving the Notification Message (specifically for the Actions set to CKL Transfer, Secure Dial, or Attention) from full bandwidth traffic and transitioning to framed operation, the terminals are required to return to full bandwidth traffic.

While not shown, the outgoing Notification Message must be acknowledged before START may be transmitted.

Figure 2.3-1(c) Notification Message Signaling Time Line (Full Bandwidth to Full Bandwidth)

See Figures 3.3-1, 3.3-4, 3.3-6, and 3.4-4 for a continuation of this flow.
An example Mode Change signaling time line is shown in Figure 2.3-1(d). The case depicted is from full bandwidth traffic and does not contain any errors, thus requires no retransmissions. A Cryptosync Exchange follows the Mode Change Request/Response Exchange and will bring both terminals back to traffic. For full bandwidth traffic, FILLER and a Start will precede traffic. In the case of framed traffic, application frames can begin as soon as Cryptosync Exchange and verification are complete.

![Figure 2.3-1(d) Mode Change Signaling Time Line](image-url)

An example Two-Way Resync signaling time line is shown in Figure 2.3-1(e). The case depicted is from full bandwidth traffic and does not contain any errors, thus requires no retransmissions. Following the Cryptosync Exchange both terminals will be brought back to application traffic. For full bandwidth traffic, FILLER and a Start will precede traffic. In the case of framed traffic, application frames can begin as soon as Cryptosync Exchange and verification are complete.

![Figure 2.3-1(e) Two-Way Resync Signaling Time Line](image-url)
2.3.2 Notification Message Processing

This section specifies the processing associated with the Notification Message. The Notification Message serves several functions and has seven associated Actions to perform these functions: Connection Terminate, Native Clear Voice, Secure Update, Connection Idle, CKL Transfer, Secure Dial, and Attention. Notification Messages containing any of these Actions are sent in the clear. All Notification Messages, except for CKL Transfer, Secure Update, and Secure Dial, can be sent at any time during call setup. Additionally, all Notification Messages, except for CKL Transfer, can be sent at any time while a SCIP application is executing. Since sending Secure Dial requires having a key negotiated and verified, it can only be sent after Cryptosync Exchange and verification. A terminal requested to perform one of these functions will generate a local indication for a Notification Message to be formatted and sent to the far end. See Section 2.3.2.1 for the message format.

Section 2.3.2.2 specifies Notification (Connection Terminate) that is used to terminate the data channel. Section 2.3.2.3 specifies Notification (Native Clear Voice/Connection Idle) processing, which allows the terminal to revert to clear voice either when an error occurs or when the user selects “Nonsecure”, or to enter the Connection Idle state if neither Native Clear Voice nor Clear MELP Voice is available. It also allows a terminal to enter the Connection Idle state when the user selects “Secure” (from Clear MELP Voice) or when a terminal executes a Secure Restart. Section 2.3.2.4 specifies Notification (CKL Transfer), which allows a terminal with a later CKL version to transmit it to a terminal with an earlier one. Section 2.3.2.5 specifies Notification (Secure Dial), which allows a terminal to transmit encrypted keypad or other dialing data to the far-end terminal. Section 2.3.2.6 specifies Notification (Attention), which allows a terminal to alert the far-end user by requesting that the far-end terminal perform a vendor elective action (e.g., emitting an audible tone, blinking the display, etc.). Section 2.3.2.7 specifies Notification (Secure Update), which allows terminals executing a secure application to update the current PPK and return to the same secure application using the updated PPK.

SCIP signaling involves three priority levels.

- The transmission and reception of the Notification (Connection Terminate) Message (Section 2.3.2.2) is the highest priority process and shall interrupt every other process.

- The transmission and reception of the Notification Messages related to Failed Call (Section 2.3.2.3.1), user selection of Nonsecure (Section 2.3.2.3.2), user selection of Secure (Section 2.3.2.3.3), Secure Restart (Section 2.3.2.3.4), and Secure Update (Section 2.3.2.7) are the next highest priority processes and shall interrupt all processes of the lowest priority. Note that in these cases, as with Connection Terminate, control is not returned to the interrupted process.

- The processes related to the transmission and reception of all other SCIP call setup and control signaling messages are of lowest priority. Once such a process (e.g., Mode Change) is started, except for the transmission of Notification Messages, the process continues to completion before another process may begin. Lowest priority Notification Messages (i.e., CKL Transfer, Secure Dial, and Attention) may be
transmitted during a “WAIT” state and will return control to that “WAIT” state, at which point the “waiting” process may continue.

Editor’s Note: These priority levels do not apply to the Transport Layer, which is first in - first out.

2.3.2.1 Notification Message Definition

The format of the Notification Message is shown in Table 2.3-1.

Table 2.3-1 Notification Message Format

<table>
<thead>
<tr>
<th>Octets</th>
<th>Bits</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>MID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-msb</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Source ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Message Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-msb</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Source ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Message Version</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-msb</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Source ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Information Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-msb</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Source ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Information Field (Optional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>First Information Field Entry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Last Information Field Entry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

L = Length of Information Field.
For the Notification Message, the value of the MID is 0x000E.

The Message Length contains the actual length of the message body (including the length of the Message Length field itself but not including the length of the MID field) in octets. The value of the field will be an unsigned binary integer with the high order bit being bit 8 of octet 3 and the low order bit being bit 1 of octet 4.

For the version of the Notification Message defined in this version of the Signaling Plan, the value of the Message Version field is 0x00.

The Action Field defines the action when a Notification Message is sent. The high order 5 bits of the first octet constitute a source for the Action Field definition. Currently identified sources are defined in Section 2.5.1. The next 11 bits constitute an Action ID. The high order bit of the Action Field is placed in bit 8 of the first octet of the field and the low order bit is placed in bit 1 of the second octet of the field. Standard values used for the Action Field are defined in Table 2.3-2.

The Information Length field contains the actual length of the Information Field (plus the length of the Information Length field itself) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 8 and the low order bit being bit 1 of octet 9.

The Information Field is variable length and contains entries of the form shown in Table 2.3-3. The Information Field can be sent in any Notification Message, and is optional for all Action Field values except those for CKL Transfer, Secure Update, and Secure Dial. Notification Messages used for CKL Transfer, Secure Update, or Secure Dial shall contain only one Information Field Entry.

<table>
<thead>
<tr>
<th>Action Field Value</th>
<th>Action Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0002</td>
<td>Connection Terminate</td>
</tr>
<tr>
<td>0x0004</td>
<td>Native Clear Voice</td>
</tr>
<tr>
<td>0x0008</td>
<td>Connection Idle</td>
</tr>
<tr>
<td>0x0010</td>
<td>CKL Transfer</td>
</tr>
<tr>
<td>0x0020</td>
<td>Secure Dial</td>
</tr>
<tr>
<td>0x0040</td>
<td>Attention</td>
</tr>
<tr>
<td>0x0080</td>
<td>Secure Update</td>
</tr>
</tbody>
</table>

If a Notification Message is intended to carry only an “Action”, the Action Field is set to the desired value defined in Table 2.3-2, the Information Length field is set to 0x0002, and the optional Information Field Entries are not transmitted.
If an optional Information Field Entry is present, its format shall be as shown in Table 2.3-3. Specifically, the Information Code field is set to one of the values in Table 2.3-4 (or to an implementer defined value with an appropriate Source ID). If the Information Code field is set to any of the entries in Table 2.3-4 other than 0x07FF, the optional Information Text field is not required and, if it is not present, the Information Text Length field is set to 0x0002. If the Information Code field is set to 0x07FF, the Information Text field is required. The only Notification Messages currently defined that require use of the optional Information Text field are CKL Transfer, Secure Update, and Secure Dial.

Table 2.3-3 Information Field Entry Format

<table>
<thead>
<tr>
<th>8 (msb)</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1 (lsb)</th>
<th>(\equiv) Bits Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-msb 0 0 0 0 X X X 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X X X X X X X X-lsb 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Text Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-msb X X X X X X X X 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X X X X X X X X X X X X X-lsb 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Text (Optional)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X X X X X X X X 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X X X X X X X X 4+L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(L = \) Length of Information Text.

- The Information Code field is set to one of the values in Table 2.3-4 (or to an implementer defined value with an appropriate Source ID). The high order 5 bits of the first octet constitute a source for the Information Code definition. Currently identified sources are defined in Section 2.5.1. The next 11 bits constitute an Information ID. The high order bit of the Information Code is placed in bit 8 of the first octet of the field, and the low order bit is placed in bit 1 of the second octet of the field. Standard values for Information Codes are defined in Table 2.3-4. Vendor specific values may also be used here. Notification Messages that have the Action set to either Secure Dial, Secure Update, or CKL Transfer shall set this to 0x07FF. Information Code 0x07FF may also be used in conjunction with any other Notification Message Action to convey additional information pertaining to the Notification that is not specifically identified by one of the predefined Information Codes. When a Notification Message, other than CKL Transfer, Secure Update, and Secure Dial, containing an Information Code of 0x07FF is received, the terminal shall recognize that the Information Text field contains additional information pertaining to the Notification; however, there are no requirements for the terminal to process this.
information. A terminal shall not fail the call if an unrecognized Information Code is received.

- The Information Text Length contains the actual length of the Information Text field (plus the length of the Information Text Length field itself), in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 3 and the low order bit being bit 1 of octet 4. If the optional Information Text field is not present, the Information Text Length field is set to 0x0002. [Deviation Notice: When using the Notification Message for CKL Transfer and the first octet of the ID Information field of the Capabilities Message transmitted by the far-end terminal contains the value 0x28 (see Section 2.2.2.1), the Information Text Length shall be set to two octets less than the actual length of the Information Text field only, i.e., four octets less than the combined length of the two fields (see also Section 2.3.2.4).]
- The Information Text is of variable length. This field is mandatory for Notification Messages that have the Action set to CKL Transfer (see Table 2.3-5 for format), Secure Dial (see Table 2.3-7 for format), or Secure Update (see Table 2.3-8 for format). In other cases this field, when present, shall carry 8-bit ASCII characters (bit 8 is the msb) that the transmitter would like the receiver to display (though there is no implied requirement that the receiver must actually do so).

Table 2.3-4 SCIP Standard Information Code Definitions

<table>
<thead>
<tr>
<th>Information Code</th>
<th>Definition</th>
<th>Occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000</td>
<td>No initiator defined</td>
<td>Section 2.2.2.3 - Capabilities Message Reception</td>
</tr>
<tr>
<td>0x0003</td>
<td>No common operational modes</td>
<td>Section 2.2.2.3 - Capabilities Message Reception</td>
</tr>
<tr>
<td>0x0005</td>
<td>SCIP response not received</td>
<td>Section 2.2.1.2 - First Message Timeout</td>
</tr>
<tr>
<td>0x0006</td>
<td>No compatible keysets</td>
<td>Section 2.2.2.3 - Capabilities Message Reception</td>
</tr>
<tr>
<td>0x0009</td>
<td>Sync message verification failure</td>
<td>Sections 2.2.5.3 - Cryptosync Message Reception; 2.3.3.1 - Mode Change Request Message; 2.3.3.2 - Mode Change Response Message</td>
</tr>
<tr>
<td>0x000A</td>
<td>Seed key held</td>
<td>Section 2.2.2.3 - Capabilities Message Reception</td>
</tr>
<tr>
<td>0x000C</td>
<td>No matching parameters</td>
<td>Sections 2.2.2.3 - Capabilities Message Reception; 2.2.3.3 - Parameters/Certificate Message Reception</td>
</tr>
<tr>
<td>0x000F</td>
<td>Security incompatibility</td>
<td>Sections 2.2.2.3 - Capabilities Message Reception; 2.2.3.3 - Parameters/Certificate Message Reception</td>
</tr>
</tbody>
</table>
Table 2.3-4 SCIP Standard Information Code Definitions (Cont.)

<table>
<thead>
<tr>
<th>Information Code</th>
<th>Definition</th>
<th>Occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0011</td>
<td>Certificate verification failure</td>
<td>Section 2.2.3.3 - Parameters/Certificate Message Reception</td>
</tr>
<tr>
<td>0x0012</td>
<td>Certificate expired</td>
<td>Section 2.2.3.3 - Parameters/Certificate Message Reception</td>
</tr>
<tr>
<td>0x0014</td>
<td>Access Control failure</td>
<td>Sections 2.2.2.3 - Capabilities Message Reception; 2.2.3.3 -Parameters/-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Certificate Message Reception</td>
</tr>
<tr>
<td>0x0017</td>
<td>Rekey Message CRC failure</td>
<td>Section 4.3 - Adaptation Layer</td>
</tr>
<tr>
<td>0x0018</td>
<td>Local CSE key expired</td>
<td>Section 2.2.3.2 - Parameters/Certificate Message Transmission</td>
</tr>
<tr>
<td>0x0041</td>
<td>Cryptosync/Mode Change glare</td>
<td>Section 2.3.3.1 - Mode Change Request Message; Section 2.3.4 - Two-Way</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resync Processing</td>
</tr>
<tr>
<td>0x0042</td>
<td>Secure Restart</td>
<td>Section 2.3.2.3.4 - Secure Restart</td>
</tr>
<tr>
<td>0x07FF</td>
<td>Defined by Information Text field(s)</td>
<td>Sections 2.3.2.4, 2.3.2.5, and 2.3.2.7 - CKL Transfer, Secure Dial, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Secure Update, respectively; Section 2.3.2.1 for implementer defined display data</td>
</tr>
</tbody>
</table>

2.3.2.2 Notification (Connection Terminate)

Connection Terminate shall be available from any state during a call. Note that Connection Terminate is a state native to the underlying network in which the data channel is terminated. As such, it is outside the scope of SCIP-210 to specify how the network will terminate the data channel. Thus, Connection Terminate will only bring a terminal to the Connection Idle state with the provision that the network takes care of terminating the data channel. It is invoked when a terminal receives a local indication to terminate the connection. The Connection Terminate processing is shown in Figure 2.3-2.

Upon receipt of an indication to terminate the connection, the terminal shall format a Notification Message as shown in Table 2.3-1, with the Action set to Connection Terminate. The terminal will transmit this Notification Message to the far end and immediately enter the Connection Idle state.
Editor’s Note: For the transport layer, this implies that the terminal need not actually transmit the Notification Message nor wait to receive the REPORT acknowledging the transmitted message before entering the Connection Idle state. Conversely, if the far-end terminal does not receive the Notification Message with the Connection Terminate Action, it is assumed that there will be network indication that would bring the terminal to the Connection Terminate state.

Upon receipt of a Notification Message with the Action set to Connection Terminate, the terminal shall immediately enter the Connection Idle state and then transition to Connection Terminate as shown in Figure 2.3-2.

NOTES:
1. The Action is set to Connection Terminate.
2. Connection Idle is a native underlying state in which the underlying data channel is open but idle.
3. Connection Terminate is a native underlying state in which the underlying data channel is brought down. This path is not standard SCIP signaling, and as such is not discussed any further.

Figure 2.3-2 Notification Message Processing (Connection Terminate)
2.3.2.3 Notification (Native Clear Voice/Connection Idle)

Notification Messages with Actions for Native Clear Voice and Connection Idle are used to perform four functions: Failed Call, Nonsecure Selected, Secure Selected, and Secure Restart. These functions are described in Section 2.3.2.3.1, Section 2.3.2.3.2, Section 2.3.2.3.3, and Section 2.3.2.3.4, respectively. Notification (Native Clear Voice/Connection Idle) receive processing is described in Section 2.3.2.3.5. The Actions for Native Clear Voice and Connection Idle shall be available from the indicated states during a call, except when the terminal is already processing a Notification (Connection Terminate) or a Notification (Native Clear Voice/-Connection Idle). The Notification (Native Clear Voice/Connection Idle) processing is shown in Figure 2.3-3.
Figure 2.2-2

Figure 2.3-3(a) Notification Message Processing (Native Clear Voice/Connection Idle)
NOTES:
1. Can be entered from any state, except when the terminal is already processing another Notification (Native Clear Voice/Connection Idle) or a Notification (Connection Terminate).
2. Secure Selected followed by the transmission of a Notification Message occurs only from Clear MELP Voice.
3. Secure Restart occurs only from a secure application (not including Electronic Rekey).
4. The Action can be set to either Native Clear Voice or Connection Idle.
5. The Action is set to Connection Idle; for Secure Restart, an Information Code of Secure Restart is also included.
6. For Secure Selected, the selected secure application will appear as the first Entry in the Operational Modes List of the Initiator’s Capabilities Message; for Secure Restart, the secure application just exited will be the first Entry.
7. The Action is set to Native Clear Voice.
8. If Native Clear Voice processing was initiated through user action (e.g., the user selected "Nonsecure"), the user need not be prompted again.
9. Clear MELP Voice will appear as the only Entry in the Operational Modes List of the Initiator’s Capabilities message.
10. Connection Idle is a native underlying state in which the underlying data channel is alive but idle. See Section 2.2.2 for transitioning into other SCIP states from Connection Idle.
11. Native Clear Voice is an application native to the underlying network. This path is not standard SCIP signaling, and as such is not discussed any further.

Figure 2.3-3(b) Notification Message Processing (Native Clear Voice/Connection Idle) (Cont.)
2.3.2.3.1 Failed Call

Failed Call uses the Action of either Native Clear Voice, if available, or Connection Idle, otherwise. Native Clear Voice is an application native to the underlying network providing the data channel. As such, it is outside the scope of this Signaling Plan to specify how the network will handle transitions into it. Thus, Native Clear Voice will only bring a terminal to the Connection Idle state with the provision that the network takes care of transitioning into a clear voice application native to it. Connection Idle is a state native to the underlying network in which the data channel is alive but idle. Failed Call is invoked when a terminal receives a local Failure Request indication (e.g., as a result of internal error detection).

Upon receipt of a local Failure Request indication, the terminal shall format a Notification Message as shown in Table 2.3-1, with the Action set to either Native Clear Voice or Connection Idle. From the Capabilities Message Exchange of call setup (see Section 2.2.2), a terminal knows which clear applications it has in common with the far end. This information will be retained from call setup and made available for Failed Call processing.

- If both the local and remote terminals support Native Clear Voice, the local terminal shall format a Notification Message with the Action set to Native Clear Voice, transmit it to the far end, prompt the user, generate a local request to enter Native Clear Voice, and immediately enter the Connection Idle state.

Editor’s Note: For Native Clear Voice, at the Transport Layer the terminal need not wait to receive the acknowledgment for the transmitted message before entering the Connection Idle state. Conversely, if the far-end terminal does not receive the Notification Message with the Native Clear Voice Action, it is assumed that there will be a network indication which would bring the terminal to Native Clear Voice. Note that even in the case where a terminal enters Native Clear Voice as a result of a network indication, the user must first acknowledge the transition.

- If Native Clear Voice is not available, the local terminal shall format a Notification Message with the Action set to Connection Idle and transmit it to the far end.

- If both the local and remote terminals support Clear MELP Voice, the terminal shall generate a local request to enter Clear MELP Voice and go to the Connection Idle state. From the Connection Idle state, the terminal will request Clear MELP Voice by transmitting a Capabilities Message, with Clear MELP Voice as the only Operational Mode offered, in accordance with the signaling specified in Section 2.2.2. Clear MELP Voice is described in Section 3.3.1.3.

- If the local and remote terminals have no clear voice application in common, the local terminal shall go to the Connection Idle state.
2.3.2.3.2 Nonsecure Selected

Nonsecure Selected shall be identical to Failed Call except that it is invoked when a terminal receives a local Nonsecure Selected indication (e.g., as the result of the user selecting “Nonsecure”). Additionally, the terminal receiving the local Nonsecure Selected indication will not prompt the user prior to entering the Connection Idle state.

2.3.2.3.3 Secure Selected

Secure Selected uses only the Action of Connection Idle. Secure Selected is invoked from Clear MELP Voice when a terminal receives a local Secure Selected indication (e.g., as the result of the user selecting “Secure”).

Upon receipt of a local Secure Selected indication, the terminal shall format a Notification Message as shown in Table 2.3-1, with the Action set to Connection Idle, and transmit it to the far end. The terminal shall then generate a local request to enter an Operational Mode with the selected mode as the preferred mode, and go to the Connection Idle state. From the Connection Idle state, the terminal will then enter secure call setup by transmitting a Capabilities Message in accordance with the signaling specified in Section 2.2.2.

2.3.2.3.4 Secure Restart

Secure Restart provides the capability for terminals executing a secure application to generate a new traffic encryption key using the FIREFLY or ECMQV Key Exchange and return to the same secure application. Secure Restart is invoked when a terminal in a secure application, other than Electronic Rekey, receives a local Secure Restart indication (e.g., for the case described in SCIP-230, Section 3.3.1, SCIP-231, Section 3.1.4.1, or SCIP-232, Section 3.4.1).

Upon receipt of a local Secure Restart indication, the (Leader) terminal shall format a Notification Message as shown in Table 2.3-1, with the Action set to Connection Idle and an Information Code of Secure Restart, and transmit it to the far end. The Leader terminal shall then generate a local request to enter an Operational Mode with the mode and parameter option just exited as the preferred mode and option, and go to the Connection Idle state. From the Connection Idle state, the Leader terminal shall enter secure call setup by transmitting a Capabilities Message with the I/R bits set to Initiator in accordance with the signaling specified in Section 2.2.2. In this Capabilities Message, the Leader terminal shall offer only FIREFLY or NATO ECMQV/AES Keysets with the same KMID, or the ECMQV/AES Keyset that was in use prior to the Secure Restart.

The Secure Restart Follower terminal, after receiving the Notification (Connection Idle) Message waits in the Connection Idle state until it receives the Capabilities Message transmitted by the Leader. Secure call setup then proceeds in the same manner as for any secure call with the I/R bits set to Responder in the Capabilities Message transmitted by the Follower terminal.
If the classification is changed in a Secure Restart, both the Leader and Follower terminals shall prompt the user and wait for an acknowledgment before transmitting secure traffic. Secure Restart places no other special requirements on the Follower terminal.

2.3.2.3.5 Notification (Native Clear Voice/Connection Idle) Receive Processing

Upon receipt of a Notification (Native Clear Voice/Connection Idle) Message, the terminal shall determine whether an Information Code is included. If an Information Code is included, the terminal will display a text message locally associated with the value contained in the Information Code field. (Implementers are permitted to associate different locally defined display texts with the Standard Information Codes contained in Table 2.3-4 so long as the text conveys the intended meaning of the code to the user.) The terminal will also determine whether Information Text is included. Information Text received in a Notification Message is text that the transmitter intends be displayed to the user (though this Signaling Plan levies no requirement on the recipient terminal to actually display this text). The terminal shall then examine the Action field. If the Action is set to Native Clear Voice, the terminal shall prompt the user, generate a local request to enter Native Clear Voice, and immediately enter the Connection Idle state. If the Action is set to Connection Idle, the terminal shall go to the Connection Idle state. From the Connection Idle state, the terminal will wait for the receipt of a Capabilities Message and then enter SCIP call setup in accordance with the signaling specified in Section 2.2.2.

2.3.2.4 Notification (CKL Transfer)

CKL Transfer allows a terminal to transmit its CKL to the far-end terminal. During secure call setup, the versions of the CKL held by both terminals are compared. If the local terminal's CKL version is later than that of the far-end terminal, the local terminal transmits its CKL to the far-end terminal (see Sections 2.2.5.2 and 2.2.5.3).

Since the CKL is large, it may be segmented and transmitted in multiple Notification Messages. Of course, the entire CKL may be transmitted as a single segment in a single Notification Message. Rules for segmenting the CKL are left to the implementer since, while they may impact performance, such rules do not impact interoperability.

This section describes the processing of a single Notification Message containing a single CKL segment. If the CKL has been segmented for transmission, the process described below shall be performed as many times as there are segments.

CKL Transfer shall be available only during SCIP Call Setup after a Cryptosync Message has been received and before the locally generated Cryptosync Message has been transmitted (see Figure 2.2-10).

Upon the local determination that a CKL Transfer is required, the terminal shall format a Notification Message as shown in Table 2.3-1, with the Action set to CKL Transfer and the
Information Text formatted as shown in Table 2.3-5, and transmit it to the far-end terminal as shown in Figure 2.2-10.

Table 2.3-5 CKL Transfer - Information Text

<table>
<thead>
<tr>
<th>Bits</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>(msb)</td>
<td>(lsb)</td>
</tr>
<tr>
<td>Segment Number</td>
<td>[Segment Number]</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Number of Segments</td>
<td>[Number of Segments]</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CKL Segment Length</td>
<td>[CKL Segment Length]</td>
</tr>
<tr>
<td>X-msb</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CKL Segment</td>
<td>[CKL Segment]</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(First Octet of CKL Segment)</td>
<td>[(First Octet of CKL Segment)]</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(L’th Octet of CKL Segment)</td>
<td>[(L’th Octet of CKL Segment)]</td>
</tr>
</tbody>
</table>

L = Length of CKL Segment.

- Segment Number indicates the relative position of the current Notification Message in the sequence of Notification Messages used to transmit the CKL. This value shall be represented as an unsigned binary integer with the high order bit being bit 8 and the low order bit being bit 1. 0x00 is presently RESERVED. 0x01 is used to indicate the first Notification Message in the sequence.

- Number of Segments indicates how many Notification Messages in total are used to transmit the CKL. This value shall be represented as an unsigned binary integer with the high order bit being bit 8 and the low order bit being bit 1. Set to 0x00 if unused/unknown (e.g., if the terminal has not yet determined how it will segment the remainder of the CKL). This field and the Segment Number field shall be set to the same value in the Notification Message that carries the final segment of the CKL. The CKL Segment Length field contains the actual length of the CKL Segment (plus the CKL Segment Length field itself) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 3 and the low order bit being bit 1 of octet 4. **[Deviation Notice: When the first octet of the ID Information field of the Capabilities Message transmitted by the far-end terminal contains the value 0x28 (see Section 2.2.2.1), a CKL transmitted to this terminal shall have the CKL Segment Length set to the actual length of the CKL Segment field only. The length of the CKL Segment Length field itself shall not be included. A CKL received from this terminal will also be formatted in this manner. However, there is**
no requirement to either transmit a CKL to this terminal or to process a CKL received from it.]

- CKL Segment Blocks (defined in SCIP-230 or SCIP-232, Section 2.1.2.1.1) shall be transmitted in order, i.e., the Block containing M11 precedes the Block containing M21, precedes the (optional) Block containing M12, precedes the (optional) Block containing M22. Within a Block the bits are ordered from high to low based on the calculation defined in SCIP-230 or SCIP-232. The high order bit of the Block containing M11 shall be placed in Bit 8 of the first octet of the first Segment transmitted, and the low order bit of the last Block shall be placed in Bit 1 of the last octet of the last Segment transmitted.

Upon receipt of a Notification Message with the Action set to CKL Transfer, the terminal will store the CKL segment. This process is shown in Figure 2.3-4. Note that it occurs in the 'Wait for CS Message' state shown in Figure 2.2-10.

When the CKL has been received in its entirety, the terminal will process it in accordance with SCIP-230 or SCIP-232, Section 2.1.2.

Editor’s Note: No requirements are implied as to when the processing of a received CKL will occur. This may in fact occur after the call has been completed.
2.3.2.5 Notification (Secure Dial)

Editor’s Note: The ability to transmit Secure Dial Characters is a required capability, but the ability to process received Secure Dial Characters is optional.

Secure Dial allows a terminal or gateway to transmit encrypted control panel information or other dialing data to the far end and to receive encrypted information from the far-end terminal for display on the control panel or for use in controlling a red gateway. This capability is provided to allow the local terminal to gain access to gateway and interworking equipment and to control it remotely. The characters that may be used as Secure Dial Characters are listed in Table 2.3-6.
Table 2.3-6 Secure Dial Characters

<table>
<thead>
<tr>
<th>ASCII character (8 bit format)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>0-9</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>T</td>
<td>change to TONE dialing mode</td>
</tr>
<tr>
<td>P</td>
<td>change to PULSE dialing mode</td>
</tr>
<tr>
<td>,</td>
<td>pause</td>
</tr>
<tr>
<td>H</td>
<td>hookflash</td>
</tr>
<tr>
<td>A</td>
<td>Autovon FO</td>
</tr>
<tr>
<td>B</td>
<td>Autovon F</td>
</tr>
<tr>
<td>C</td>
<td>Autovon I</td>
</tr>
<tr>
<td>D</td>
<td>Autovon P</td>
</tr>
<tr>
<td>R</td>
<td>hookswitch reset</td>
</tr>
<tr>
<td>E</td>
<td>end of dialing</td>
</tr>
<tr>
<td>F</td>
<td>go off-hook</td>
</tr>
<tr>
<td>N</td>
<td>go on-hook</td>
</tr>
</tbody>
</table>

Editor’s Note: Use of the “end of dialing” character (see Table 2.3-6) is optional and left to the discretion of the implementer.

Secure Dial Characters may be transmitted in one or more Notification Messages with each Notification Message containing one to twelve Secure Dial Characters. The Notification Messages are transmitted in an order so that the first Characters to be displayed or to be passed to the red gateway are transmitted first. Characters may either be accumulated or may be transferred as soon as they are available.

This section describes processing of a single Notification Message. This processing is shown in Figure 2.3-5. If the Secure Dial characters are to be transmitted in multiple Notification Messages, the processing described in this section will be repeated for each Notification Message until all dialing information has been sent.
NOTES:
1. Can be entered from any secure state, once Cryptosync Messages have been exchanged and verified, until that state is exited by processing an Action for Native Clear Voice/Connection Idle or Connection Terminate.
2. The Action is set to Secure Dial.
3. If Secure Dial was entered from application traffic, the same application is re-entered. See Section 3.

Figure 2.3-5 Notification Message Processing (Secure Dial)

Secure Dial shall be available any time after the key has been negotiated and verified (i.e., Cryptosync Messages have been exchanged) for as long as the key remains available for use. (Note that the key is no longer available for use after a Native Clear Voice/Connection Idle or a Connection Terminate operation).
2.3.2.5.1 Encryption of Secure Dial Characters

The encryption of Secure Dial characters is specified in SCIP-230 or SCIP-231, Section 4.1.3.1; or SCIP-232, Section 4.3.1. The Secure MELP Voice encryption mode is used. In this mode two 54 bit frames are encrypted for each value of the state vector (which in Secure Dial is based on the value carried in the IV field of the Notification Message). The Secure Dial characters are ordered as they will be displayed or passed to the red gateway (e.g., character 1 in the message is to be displayed before character 2, etc.).

The Secure Dial characters to be included in a Notification Message shall be formatted into one or two six-character frames prior to encryption. If there are fewer than six characters in a frame, padding may be used to complete the frame. While the IV is updated for each Notification Message sent, for a single Notification Message both frames shall be encrypted, as specified in SCIP-230 or SCIP-231, Section 4.1.3.1; or SCIP-232, Section 4.3.1, using the same IV.

After the data has been encrypted, it is transmitted in the Information Text field of a Notification Message. Only the encrypted bits corresponding to the Secure Dial characters shall be transmitted. Encrypted padding octets (if present) shall be discarded.

2.3.2.5.2 Data Transmission and Reception

The terminal shall format a Notification Message as shown in Table 2.3-1, with the Action set to Secure Dial and the Information Text formatted as shown in Table 2.3-7, and transmit it to the far-end terminal. If the Secure Dial transmission interrupted full bandwidth application traffic, after the Notification Message has been acknowledged the terminal will re-enter the same application using the signaling specified in Section 3.2.
Table 2.3-7 Secure Dial - Information Text

<table>
<thead>
<tr>
<th>Segment Number</th>
<th>Number of Segments</th>
<th>IV Length</th>
<th>IV</th>
<th>Secure Dial Packet Length</th>
<th>Secure Dial Packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>X X X X</td>
<td>X X X X</td>
<td>X X X X</td>
<td>X X X X X</td>
<td>X X X X X X X X X X</td>
<td>b8 - msb b7 b6 b5 b4 b3 b2 b1 - lsb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>X X X X X X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>(First Octet of IV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>(L'sth Octet of IV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The Segment Number indicates the relative position of a Notification Message in a sequence of multiple Notification Messages used to transmit the Secure Dial characters. This value shall be represented as an unsigned binary integer with the high order bit being bit 8 and the low order bit being bit 1. 0x00 is presently RESERVED. 0x01 is used to indicate the first of many Notification Messages, 0x02 the second, etc.
- Number of Segments indicates how many Notification Messages in total are used to transmit the Secure Dial characters. This value shall be represented as an unsigned binary integer with the high order bit being bit 8 and the low order bit being bit 1. Set to 0x00 if unused/unknown (e.g., if the end of the user dialing sequence is unknown until a specific character is dialed).
• The IV Length field contains the actual length of the IV field (plus the IV Length field itself) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 3 and the low order bit being bit 1 of octet 4.
• The IV field shall contain the IV used to encrypt the Secure Dial Characters. Details of the length, format, and contents are found in SCIP-230, Section 3.5.1, SCIP-231, Section 3.3.1, or SCIP-232, Section 3.6.1. The msb of the IV (as defined in SCIP-23x) is placed in bit 8 of octet 5.
• Secure Dial Packet Length field contains the actual length of the Secure Dial Packet (plus the Secure Dial Packet Length field itself) in octets. The high order bit of the Secure Dial Packet Length is placed in bit 8 of the first octet of the field and the low order bit is placed in the second octet of the field.
• Secure Dial Packet. Contains one to twelve encrypted Secure Dial Characters.

Upon receipt of a Notification Message with the Action set to Secure Dial, the terminal shall decrypt the Secure Dial characters and make them available either for display or for use in controlling a red gateway. If the Secure Dial transmission interrupted full bandwidth application traffic, after the Notification Message has been correctly received and acknowledged the terminal will re-enter the same application using the signaling specified in Section 3.2.

Editor's Note: If additional secure Notifications are added to the Signaling Plan, the intent is to follow the general structure shown in Table 2.3-7, i.e., the Information Text field will carry an IV followed by encrypted data.

2.3.2.6 Notification (Attention)

Editor's Note: Implementation of Attention is optional. This means that a terminal does not have to implement the capability to transmit it nor to process it (i.e., alerting the user). However, a terminal receiving an Attention is required to acknowledge it in the same manner as with all other standard SCIP messages. If it is implemented, terminals with this capability will behave in accordance to the specifications outlined in this section.

Attention shall be available from any state during a call except when the terminal is already processing a Native Clear Voice/Connection Idle or Connection Terminate. It is invoked when a terminal receives a local indication to send an Attention to the far end. When received, the Notification Message (containing the Attention option) alerts the terminal to warn the user by performing a vendor elected action (e.g., emitting an audible tone, blinking the display, etc.). This processing is shown in Figure 2.3-6.

Upon receipt of an Attention indication, the terminal shall format a Notification Message as specified in Table 2.3-1, with the Action set to Attention, and transmit it to the far-end terminal. If the entry to Attention processing was from an application, the terminal shall re-enter the same application via processing as specified in the subsection of Section 3 that describes that application.
Upon receipt of a Notification Message with the Action set to Attention, the terminal shall alert the user. If the entry to Attention processing was from an application (either clear or secure), the terminal shall re-enter the same application via processing as specified in the subsection of Section 3 that describes that application.

NOTES:
1. Can be entered from any state except when the terminal is already processing an Action for Native Clear Voice/Connection Idle or Connection Terminate.
2. The Action is set to Attention.
3. If this process is entered from application traffic, the same application is re-entered. See Section 3.

Figure 2.3-6 Notification Message Processing (Attention)
Secure Update provides the capability for terminals in a secure call using a PPK to update the PPK, switch from the currently active PPK to the updated PPK, and return to the same secure application. Secure Update is analogous to Secure Restart (Section 2.3.2.3.4), which is used to generate a new traffic encryption key using the FIREFLY or ECMQV Key Exchange during a secure call and return to the same secure application.

During a Secure Update, the Leader terminal always updates the currently active PPK. If the Follower terminal is configured for automatic updates, it updates the currently active PPK automatically. If both terminals successfully update the currently active PPK, the updated PPK is negotiated. Otherwise, the currently active PPK is renegotiated.

Secure Update shall be available for use only when a PPK is in use and both terminals transmitted Message Version 1 or higher Capabilities Messages during secure call setup. Secure Update is invoked when a terminal in a secure application, other than Electronic Rekey, receives a local Secure Update indication (e.g., for the cases described in SCIP-230, Sections 2.1.1.8.3 and 3.3.1.3, or SCIP-232, Sections 2.1.1.8.3 and 3.4.1.3).

Upon receipt of a local Secure Update indication, the Leader terminal shall generate an Encrypted Packet, as specified in SCIP-230, Section 3.4.2.4, or SCIP-232, Section 3.5.2.4, to be verified by the Follower terminal. The Leader terminal shall then format a Notification Message as shown in Table 2.3-1, with the Action set to Secure Update and the Information Text formatted as shown in Table 2.3-8, and transmit it to the far end. The Leader terminal shall then generate a local request to enter an Operational Mode with the mode and parameter option just exited as the preferred mode and option, and go to the Connection Idle state. The Leader terminal shall then update the currently active PPK. Only the update of the currently active PPK and the PPK in use prior to the Secure Update shall be offered in the subsequent secure call setup (except for the case specified in SCIP-230, Section 3.3.1.3, or SCIP-232, Section 3.4.1.3, where only the update of the currently active PPK is offered). From the Connection Idle state, the Leader terminal shall enter secure call setup by transmitting a Capabilities Message with the I/R bits set to Initiator in accordance with the signaling specified in Section 2.2.2. The Keysets shall be ordered as specified in SCIP-230 or SCIP-232, Section 2.1.1.8.3.

Table 2.3-8 Secure Update - Information Text

<table>
<thead>
<tr>
<th>Encrypted Packet</th>
<th>Bits (Octets)</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-msb X X X X X X X</td>
<td>(1)</td>
<td>(M)</td>
</tr>
<tr>
<td>X X X X X X X X X X X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(M = \) Length of Encrypted Packet.
- Inclusion of the Encrypted Packet is mandatory in the Secure Update Notification Message. The msb of the Encrypted Packet (as defined in SCIP-230 or SCIP-232) is placed in Bit 8 of the first octet of the Encrypted Packet field. The length, the encryption algorithm and mode to be used, and the content and format of the plaintext data to be encrypted are defined in SCIP-230, Section 3.4, or SCIP-232, Section 3.5.

If configured for automatic updates, the Secure Update Follower terminal, after receiving the Notification (Secure Update) Message, shall verify the Encrypted Packet contained in the Secure Update Notification Message as specified in SCIP-230, Section 3.4.2.4, or SCIP-232, Section 3.5.2.4. If the Follower terminal is not configured for automatic updates, it shall offer only the last negotiated PPK in the subsequent secure call setup.

If the Encrypted Packet verifies, the Follower terminal shall automatically update the currently active PPK and offer this update and the last negotiated PPK in the subsequent secure call setup.

If the Encrypted Packet does not verify, the Follower terminal shall offer only the last negotiated PPK in the subsequent secure call setup.

The Follower terminal then waits in the Connection Idle state until it receives the Capabilities Message transmitted by the Leader. Secure call setup then proceeds in the same manner as for any secure call with the I/R bits set to Responder in the Capabilities Message transmitted by the Follower terminal. This processing is shown in Figure 2.3-7.

If the PPK in use prior to the Secure Update is negotiated and the terminals are configured for attended operation, both the Leader and Follower terminals shall prompt the user to acknowledge that the key update operation did not occur successfully and that the PPK in use prior to the Secure Update will be used to continue the secure call. The terminals shall wait for a user acknowledgment before transmitting secure traffic. If the user accepts the negotiated key, the call shall proceed to secure traffic using the negotiated key. If the user does not accept the key, the terminal shall execute Failed Call processing as specified in Section 2.3.2.3.1. The user prompt may be disabled for terminals configured for unattended operation (see SCIP-230 or SCIP-232, Section 2.1.1.8.3).
Figure 2.3-7 Notification Message Processing (Secure Update)

NOTES:
1. Can be entered from any secure application, excluding Electronic Rekey.
2. The Action is set to Secure Update.
3. The test used to verify the Encrypted Packet in the Information Text field is defined in SCIP-230 or SCIP-232.
4. If the Encrypted Packet verifies, the PPK is updated automatically.
5. Both the updated PPK and last negotiated PPK are offered in the Capabilities Message in the subsequent call setup.
6. Only the last negotiated PPK is offered in the Follower's Capabilities Message in the subsequent call setup.
7. The secure application executing prior to the Secure Update will appear as the first Entry in the Operational Modes List of the Leader's Capabilities Message.

Figure 2.2-2
2.3.3 Mode Change Processing

This section specifies the signaling associated with Mode Change processing. Mode Change processing shall be available for use only when both terminals transmitted Message Version 1 or higher Capabilities Messages during SCIP secure call setup, and will be entered only when both terminals are in secure application traffic. The use of Mode Change shall be limited to changing from one secure application to a different secure application, or to the same secure application with different parameters, using the same key and the same traffic encryption algorithm. Two messages are involved: Mode Change Request and Mode Change Response. Section 2.3.3.1 specifies the Mode Change Request Message, and Section 2.3.3.2 specifies the Mode Change Response Message. The signaling is shown in Figure 2.3-8.

Editor's Note: Currently, the only standard SCIP clear application defined is Clear MELP Voice. In the event that other standard SCIP clear applications are defined, Mode Change may need to be updated to include changing from one clear application to another one.

2.3.3.1 Mode Change Request Message

Mode Change is invoked when a terminal in a secure application receives a local Mode Change indication. The terminal will ensure that the requested Operational Mode is one common to both terminals and that it is allowed by the ACL, if the ACL has been activated for the chosen Operational Mode (See SCIP-230 or SCIP-232, Section 2.1.3.1.2) and the chosen Keyset Type is supported by the ACL, before proceeding. If the ACL has not been activated for the chosen Operational Mode and/or the chosen Keyset Type is not supported by the ACL, the ACL check is skipped. Upon receipt of a local Mode Change indication, the terminal shall assume the role of Leader, format a Mode Change Request Message, and transmit it to the far end. The format of the Mode Change Request Message shall be as specified in Table 2.3-9. The Leader shall then wait for a Mode Change Response Message from the far-end terminal.

Upon receipt of a Mode Change Response Message, the Leader shall format a Cryptosync Message as specified in Section 2.2.5, transmit it to the far-end terminal, and wait for a Cryptosync Message. Upon receipt of a Cryptosync Message, the terminal shall verify the Encrypted Packet contained in the Cryptosync Message as specified in SCIP-230, Section 3.4.2, SCIP-231, Section 3.2.2, or SCIP-232, Section 3.5.2. If this check does not pass, the terminal shall execute Failed Call processing, defined in Section 2.3.2.3.1, with an Information Code of sync message verification failure. If the Encrypted Packet check passes and there was no classification change as a result of the Mode Change, the terminal shall initiate the indicated Operational Mode as specified in Section 3. If the classification was changed during the Mode Change, the user shall be prompted, and an acknowledgment is required prior to initiating the indicated Operational Mode.
Figure 2.3-8 Mode Change Processing

- Both Leader and Follower enter Mode Change processing from Secure Application Traffic.
- The terminal that receives a Mode Change Indication before receiving a Mode Change Request message will assume the role of Leader.
- See Section 2.2.5 for format.
- If a Mode Change Request is received after a Mode Change Request is transmitted (a race condition), the Leader will be the terminal that was the Initiator in Call Setup. It will ignore the Mode Change Request and continue to wait for a Mode Change Response. The other terminal will assume the role of Follower and transmit the Mode Change Response.
- If the chosen Keyset Type is not supported by an ACL, the “Yes” path is taken. If the chosen Keyset Type is supported by an ACL, the ACL test will be performed only if the ACL has been activated in the terminal.
- The application traffic will be in the same mode and with the same parameters as prior to the Mode Change Request, since the terminals have no common parameters or the requested mode and/or parameters are not allowed.
- The tests used to verify a Cryptosync Message Packet are defined in SCIP-231.
- See Section 3.
The following signaling will take place in the event of a race condition, i.e., both terminals receive local Mode Change indications and transmit Mode Change Request Messages. The terminal that was determined to be the Responder in call setup shall assume the role of Follower, and the other terminal shall assume the role of Leader. The Leader, upon receipt of a Mode Change Request Message, shall ignore it, wait for the Mode Change Response Message, and continue in the manner described above when it is received. The Follower, upon receipt of a Mode Change Request Message shall proceed in the manner described in Section 2.3.3.2.

In the event of a glare condition, i.e., instead of receiving the expected Mode Change Response Message, the Leader receives a Cryptosync Message, the following signaling shall take place. Upon receipt of the Cryptosync Message, the terminal shall initiate Failed Call processing as specified in Section 2.3.2.3 with the Information Code set to Cryptosync/Mode Change glare.

Table 2.3-9 Mode Change Request Message Format

<table>
<thead>
<tr>
<th>Bits</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 (msb)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td>MID</td>
<td></td>
</tr>
<tr>
<td>0-msb</td>
<td>0</td>
</tr>
<tr>
<td>Source ID</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Message Length</td>
<td>2</td>
</tr>
<tr>
<td>X-msb</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Message Version</td>
<td>3</td>
</tr>
<tr>
<td>X-msb</td>
<td>X</td>
</tr>
<tr>
<td>Operational Mode</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Source ID</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Parameters Length</td>
<td>7</td>
</tr>
<tr>
<td>X-msb</td>
<td>X</td>
</tr>
<tr>
<td>Parameters Length</td>
<td>8</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Operational Mode Parameters (Optional)</td>
<td>9+L</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Parameters Length</td>
<td>10</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
• For the Mode Change Request Message, the value of the MID is 0x001A.
• The Message Length shall contain the actual length of the message body (including
 the length of the Message Length field itself but not including the length of the MID
 field) in octets. The value of the field shall be an unsigned binary integer with the
 high order bit being bit 8 of octet 3 and the low order bit being bit 1 of octet 4.
• For the version of the Mode Change Request Message defined in this version of the
 Signaling Plan, the value of the Message Version field is 0x00.
• The Operational Mode field shall contain the ID of the selected Operational Mode.
 For the format and values of these IDs, see the definition of Operational Mode IDs in
 Section 2.2.2.1. The high order bit of the Operational Mode field is placed in bit 8 of
 octet 6 and the low order bit is placed in bit 1 of octet 7. Note that this selected
 Operational Mode will be one supported by both terminals.
• The Parameters Length field contains the actual length of the Operational Mode
 Parameters field (plus the length of the Parameters Length itself), in octets. The
 value of the field shall be an unsigned binary integer with the high order bit being bit
 8 of the first octet of the field and the low order bit being bit 1 of the second octet of
 the field.
• The Operational Mode Parameters field shall contain parameters for the selected
 Operational Mode. The length, format, and contents of the Operational Mode
 Parameters are unique to each Operational Mode and are defined in Section 2.2.6 for
 each standard Operational Mode having a Parameters/Certificate Exchange. This
 field is optional and is not present unless Parameters are defined for a given
 Operational Mode.

2.3.3.2 Mode Change Response Message

Upon receipt of a Mode Change Request Message while in a secure application, the terminal
shall assume the role of Follower. It shall then check for compatible parameters and security
levels for the offered Operational Mode. If the ACL has been activated for the chosen
Operational Mode and the chosen Keyset Type is supported by the ACL, the terminal shall also
perform the ACL test as specified in SCIP-230 or SCIP-232, Section 2.1.3.1.2. If there are
compatible parameters and compatible security levels and the ACL test passes, the Follower
shall accept the offered Operational Mode. If there are no compatible parameters or no
compatible security levels, or if the ACL test fails, the terminals shall continue executing the
current Operational Mode. If the ACL has not been activated for the chosen Operational Mode
and/or the chosen Keyset Type is not supported by the ACL, the ACL check is skipped.

The Follower shall transmit to the far end a Mode Change Response Message formatted as
specified in Table 2.3-10 indicating the selected Operational Mode and Operational Mode
Parameters Option. It shall then format a Cryptosync Message as specified in Section 2.2.5,
transmit it to the far-end terminal, and wait for a Cryptosync Message. Upon receipt of a
Cryptosync Message, the terminal shall verify the Encrypted Packet contained in the Cryptosync
Message as specified in SCIP-230, Section 3.4.2.3, SCIP-231, Section 3.2.2, or SCIP-232,
Section 3.5.2.3. If this check does not pass, the terminal shall execute Failed Call processing,
defined in Section 2.3.2.3.1, with an Information Code of *sync message verification failure*. If the Encrypted Packet check passes and there was no classification change as a result of the Mode Change, the terminal shall initiate the indicated Operational Mode as specified in Section 3. If the classification was changed during the Mode Change, the user shall be prompted, and an acknowledgment is required prior to initiating the indicated Operational Mode.

Table 2.3-10 Mode Change Response Message Format

<table>
<thead>
<tr>
<th>Bits (msb)</th>
<th>Octets</th>
<th>Bits (lsb)</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 7 6 5 4 3 2 1</td>
<td></td>
<td>1 0 9 8 7 6 5 4 3 2 1</td>
<td></td>
</tr>
<tr>
<td>MID</td>
<td></td>
<td>Message Length</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td>X X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>Source ID</td>
<td></td>
<td>Message Version</td>
<td></td>
</tr>
<tr>
<td>0 0 0 1 1 1 1 0</td>
<td></td>
<td>0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Message Length</td>
<td></td>
<td>Operational Mode</td>
<td></td>
</tr>
<tr>
<td>X X X X X X X X</td>
<td></td>
<td>X X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>Source ID</td>
<td></td>
<td>Parameters Length</td>
<td></td>
</tr>
<tr>
<td>X X X X X X X X</td>
<td></td>
<td>X X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>Operational Mode Parameters (Optional)</td>
<td></td>
<td>Operational Mode Parameters (Optional)</td>
<td></td>
</tr>
<tr>
<td>X X X X X X X X</td>
<td></td>
<td>X X X X</td>
<td></td>
</tr>
</tbody>
</table>

L = Length of Operational Mode Parameters.

- For the Mode Change Response Message, the value of the MID is 0x001C.
- The Message Length shall contain the actual length of the message body (including the length of the Message Length field itself but not including the length of the MID field) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 3 and the low order bit being bit 1 of octet 4.
For the version of the Mode Change Response Message defined in this version of the Signaling Plan, the value of the Message Version field is 0x00.

The Operational Mode field shall contain the ID of the selected Operational Mode. For the format and values of these IDs, see the definition of Operational Mode IDs in Section 2.2.2.1. The high order bit of the Operational Mode field is placed in bit 8 of octet 6, and the low order bit is placed in bit 1 of octet 7. Note that Operational Mode shall be the mode offered in the Mode Change Request Message, unless either the terminal cannot support at least one of the offered Operational Mode Parameters Options, if included, or the ACL test fails. If the terminal does not support any of the Options offered or if the ACL test fails, the Operational Mode shall be the mode the terminal was executing when the Mode Change Request Message was received.

The Parameters Length field contains the actual length of the Operational Mode Parameters field (plus the length of the Parameters Length field itself), in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of the first octet of the field and the low order bit being bit 1 of the second octet of the field.

The Operational Mode Parameters shall contain the first Option on the Leader’s Options List that is also supported by the Follower for the selected Operational Mode. The length, format, and contents of the Operational Mode Parameters are unique to each Operational Mode and are defined in Section 2.2.6 for each standard Operational Mode having a Parameters/Certificate Exchange. This field is optional and is not present unless Parameters are defined for the selected Operational Mode. If the terminal does not support any of the Options offered or if the ACL test fails, the Operational Mode Parameters shall contain the Option the terminal was executing when the Mode Change Request Message was received.

2.3.4 Two-Way Resync Processing

This section specifies the signaling associated with Two-Way Resync processing. Only the Cryptosync Message is involved. The processing is shown in Figure 2.3-9. Two-Way Resync processing is invoked when a terminal in secure application traffic receives a local Two-Way Resync indication. A local Two-Way Resync indication is generated when a terminal detects that it has lost cryptographic synchronization with the far end or when selected manually by the user (e.g., by selecting "Secure" during secure application traffic).
NOTES:
1. A Two-way Resync indication is generated when a terminal in a secure application, such as Secure MELP Voice, detects that it is cryptographically out-of-sync with the far end or when the user selects "Secure".
2. The terminal re-enters the same secure application from which it entered Two-Way Resync.
3. See Section 2.3.2.3.

Figure 2.3-3 Two-Way Resync Processing

During the secure call setup processing of Cryptosync Messages, Application IVs are exchanged together with Encrypted Packets that verify call setup negotiations were performed correctly. Since Two-Way Resync is not initiated until after secure call setup has been completed, i.e., both terminals have received Cryptosync Messages, the verification process is not repeated.

Upon receipt of a local Two-Way Resync indication, the terminal shall assume the role of Leader, format a Cryptosync Message as specified in Section 2.2.5, except that the optional Encrypted Packet shall not be included (i.e., the Packet Length contained in the Cryptosync Message is set to 0x0002, and the optional Encrypted Packet field is not present), transmit it to the far end, and wait for a Cryptosync Message. Upon receipt of the Cryptosync Message, the Leader shall initiate the secure application as specified in Section 3.
Upon receipt of a Cryptosync Message, a terminal that has not transmitted a Cryptosync Message shall assume the role of Follower, format a Cryptosync Message as specified in Section 2.2.5 (but without the optional Encrypted Packet), transmit it to the far-end terminal, and initiate the secure application as specified in Section 3.

In the event of a glare condition, i.e., instead of receiving the expected Cryptosync Message, the Leader receives a Mode Change Request Message, the following signaling shall take place. Upon receipt of the Mode Change Request Message, the terminal shall initiate Failed Call processing as specified in Section 2.3.2.3 with the Information Code set to Cryptosync/Mode Change glare.
2.4 SCIP Signaling Timeouts

Table 2.4-1 identifies the timeouts that have been defined for SCIP Signaling. It identifies the conditions under which each timeout occurs and the action to be taken. The initial values to be used for the timers are suggested values and are not requirements.

<table>
<thead>
<tr>
<th>Timeout (Identification and Conditions)</th>
<th>Starting the Timer</th>
<th>Stopping the Timer</th>
<th>Action to be Performed on Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Layer Timers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re-transmit Timeout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occurs when neither a REPORT ACK’ing all outstanding frames nor a REPORT NAK’ing some specific frames has been received. See Section 2.1.</td>
<td>Except after Transport Layer control messages (REPORT), this timer is started at the point where the EOM has been transmitted. It is initialized to 3 seconds at the beginning of initial call setup. It may then be adapted based on measured channel delay. See Section 2.1</td>
<td>This timer is stopped when a REPORT ACK’ing all outstanding frames is received. It is stopped/restarted when a frame group is (re)transmitted. See Section 2.1.</td>
<td>Upon expiration of this timer, frames that have not been acknowledged are retransmitted. See Section 2.1.</td>
</tr>
<tr>
<td>Message Layer Timer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Message Timeout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occurs when a recognizable SCIP message is not received from the far end. See Section 2.2.</td>
<td>This timer is started when the Capabilities Message is transmitted by an Initiator. It is set to 30 seconds to facilitate multiple retransmissions. See Section 2.2.</td>
<td>This timer is stopped when a valid Capabilities or Notification Message is received from the far end. See Section 2.2.2.</td>
<td>Upon expiration of this timer, the Failed Call Processing logic defined in Section 2.3.2.3 is executed.</td>
</tr>
</tbody>
</table>
Table 2.4-1 SCIP Signaling Timeouts (Cont.)

<table>
<thead>
<tr>
<th>Timeout (Identification and Conditions)</th>
<th>Starting the Timer</th>
<th>Stopping the Timer</th>
<th>Action to be Performed on Timeout</th>
</tr>
</thead>
</table>
| **Application Timer**
(Note - This timer applies to full bandwidth applications. Such applications are not required to be implemented in a layered manner. If they are implemented in a layered manner, the location of the timer depends on the implementer's layering.) | This timer is started when a terminal transmits the START pattern prior to receiving the pattern from the far end. It is initialized to 6 seconds at initial call setup. It may then be adapted based on measured channel delay. See Section 3.2.1.1. | This timer is stopped when a START is received. See Section 3.2.1.1. | Upon expiration of this timer, the START is retransmitted, preceded by an ESCAPE, and the Timer is restarted. See Section 3.2.1.1. |
| **Application Timeout**
Occurs when a START is not received from the far-end terminal. See Section 3.2.1.1, Application Timeout. | | | |
2.5 SCIP Signaling Constants

2.5.1 Source Definitions

Several fields include a Source ID in the upper 5 bits of the field. The high order bit of the Source ID maps to bit 8 of the first octet of the field, and the low order bit of the Source ID maps to bit 4 of the first octet. For all such fields the Source IDs defined in Table 2.5-1 shall be used.

Table 2.5-1 Source Definitions

<table>
<thead>
<tr>
<th>Source ID</th>
<th>Source Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>Defined in this Signaling Plan.</td>
</tr>
<tr>
<td>0x01</td>
<td>Defined by France.</td>
</tr>
<tr>
<td>0x03</td>
<td>Defined by General Dynamics.</td>
</tr>
<tr>
<td>0x05</td>
<td>Defined by L-3.</td>
</tr>
<tr>
<td>0x09</td>
<td>Defined by QUALCOMM.</td>
</tr>
<tr>
<td>0x12</td>
<td>Defined by the UK.</td>
</tr>
</tbody>
</table>

2.5.2 MIDs

The definitions of the standard MIDs are scattered throughout this document. They are gathered in Table 2.5-2 for convenience. Should a difference be found between this table and the other sections of the document, the other sections govern.

MIDs are 2 octets in length. The high order 5 bits of the first octet constitute a source for the MID. Currently identified sources are defined in Table 2.5-1. The next 11 bits constitute an MID number.

Table 2.5-2 MIDs

<table>
<thead>
<tr>
<th>MID Values</th>
<th>MID Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0001</td>
<td>Reserved.</td>
</tr>
<tr>
<td>0x0002</td>
<td>Capabilities Message.</td>
</tr>
<tr>
<td>0x0003</td>
<td>Extended Keysets List Message.</td>
</tr>
<tr>
<td>0x0004</td>
<td>F(R) Message.</td>
</tr>
<tr>
<td>0x0008</td>
<td>Cryptosync Message.</td>
</tr>
<tr>
<td>0x0009</td>
<td>Multipoint Cryptosync Message.</td>
</tr>
<tr>
<td>0x000E</td>
<td>Notification Message.</td>
</tr>
<tr>
<td>0x0010</td>
<td>Parameters/Certificate Message.</td>
</tr>
</tbody>
</table>
Table 2.5-2 MIDs (Cont.)

<table>
<thead>
<tr>
<th>MID Values</th>
<th>MID Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x001A</td>
<td>Mode Change Request Message.</td>
</tr>
<tr>
<td>0x001C</td>
<td>Mode Change Response Message.</td>
</tr>
<tr>
<td>0x0020</td>
<td>REPORT.</td>
</tr>
<tr>
<td>0x0023</td>
<td>Reserved for Tactical IWF (CONNECT).</td>
</tr>
<tr>
<td>0x0025</td>
<td>Reserved for Tactical IWF (DISCONNECT).</td>
</tr>
<tr>
<td>0x0040</td>
<td>Secure Reliable Transport Asynchronous Data Message.</td>
</tr>
<tr>
<td>0x0080</td>
<td>Reserved for compatibility with legacy terminals.</td>
</tr>
<tr>
<td>0x00E0</td>
<td>SCIP Rekey Message.</td>
</tr>
</tbody>
</table>

2.5.3 Miscellaneous SCIP Signaling Constants

Table 2.5-3 identifies the constants that have been defined for SCIP Signaling. It identifies both the values and uses of each constant.

2.5.3.1 ESCAPE

The ESCAPE sequence consists of two concatenated copies of the output of a 7-stage maximum length linear sequence generator padded with the first two bits of the sequence to give 256 bits. The coefficients of the generator polynomial are 203 (octal)\(^1\).

2.5.3.2 Start of Message (SOM) and End of Message (EOM)

The SOM sequence is the output of a 6-stage maximum length linear sequence generator augmented with a leading zero-bit. The coefficients of the generator polynomial are 103 (octal). The EOM is the bit by bit complement of the SOM.

2.5.3.3 START and FILLER

The START sequence is the output of a 6-stage maximum length linear sequence generator augmented with a leading zero-bit. The coefficients of the generator polynomial are 141 (octal). FILLER is the bit by bit complement of the START sequence.

\(^1\) The polynomial with coefficients 203 (octal) is \(x^7 + x + 1\).
2.5.3.4 Headers

The Header sequences are the outputs of 4-stage maximum length linear sequence generators, each augmented with a leading zero-bit. The coefficients of the generator polynomials are 31 (octal) for the Sync Management (SM) frame Header and 23 (octal) for the G.729D Encrypted Speech (ES) frame Header PN sequence. Note that the ES frame Header PN sequence is formed by rotating the generator output two bit positions to the right prior to adding the leading zero.
Table 2.5-3 Miscellaneous SCIP Signaling Constants

<table>
<thead>
<tr>
<th>Constant</th>
<th>Generated PN Sequence:</th>
<th>Use(s) for the Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCAPE</td>
<td>Generated PN Sequence:</td>
<td></td>
</tr>
<tr>
<td>(256 bits</td>
<td>0x</td>
<td>For point-to-point operation, the transmitter uses the ESCAPE to break the receiver</td>
</tr>
<tr>
<td>long)</td>
<td>FE041851E459D4FA</td>
<td>out of full bandwidth application traffic. If a terminal is in an application when</td>
</tr>
<tr>
<td></td>
<td>1C49B5BD8D2EE655</td>
<td>the ESCAPE is received, it stops the application traffic and starts framing. (Details</td>
</tr>
<tr>
<td></td>
<td>FC0830A3C8B3A9F4</td>
<td>are in Section 2.1.)</td>
</tr>
<tr>
<td></td>
<td>38936B7B1A5DCCAB</td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td>[7F 20 18 8A 27 9A 2B</td>
<td>For multipoint operation, the transmitter uses the EOT, which is the same pattern as</td>
</tr>
<tr>
<td>Table Value:</td>
<td>5F</td>
<td>the ESCAPE, to indicate the end of multipoint traffic transmission. (Details are in</td>
</tr>
<tr>
<td></td>
<td>38 92 AD BD B1 74 67 AA</td>
<td>Sections 5.1.5 and 5.2.)</td>
</tr>
<tr>
<td></td>
<td>3F 10 0C C5 13 CD 95 2F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1C C9 D6 DE 58 BA 33 D5</td>
<td></td>
</tr>
<tr>
<td>EOT</td>
<td>Generated PN Sequence:</td>
<td></td>
</tr>
<tr>
<td>(256 bits</td>
<td>0x</td>
<td>For multipoint operation, the transmitter uses the EOT, which is the same pattern as</td>
</tr>
<tr>
<td>long)</td>
<td>FE041851E459D4FA</td>
<td>the ESCAPE, to indicate the end of multipoint traffic transmission. (Details are in</td>
</tr>
<tr>
<td></td>
<td>1C49B5BD8D2EE655</td>
<td>Sections 5.1.5 and 5.2.)</td>
</tr>
<tr>
<td></td>
<td>FC0830A3C8B3A9F4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38936B7B1A5DCCAB</td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td>[7F 20 18 8A 27 9A 2B</td>
<td>The message as a whole is delimited by a Start of Message (SOM) and an End of Message</td>
</tr>
<tr>
<td>Table Value:</td>
<td>5F</td>
<td>(EOM). Upon receipt of an SOM, the receiver will start message processing. (Sections 2.1</td>
</tr>
<tr>
<td></td>
<td>38 92 AD BD B1 74 67 AA</td>
<td>and 5.1)</td>
</tr>
<tr>
<td></td>
<td>3F 10 0C C5 13 CD 95 2F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1C C9 D6 DE 58 BA 33 D5</td>
<td></td>
</tr>
<tr>
<td>SOM</td>
<td>Generated PN Sequence:</td>
<td></td>
</tr>
<tr>
<td>(64 bits</td>
<td>0x7E08629E8E4B766A</td>
<td>The message as a whole is delimited by a Start of Message (SOM) and an End of Message</td>
</tr>
<tr>
<td>long)</td>
<td></td>
<td>(EOM). Upon receipt of an SOM, the receiver will start message processing. (Sections 2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and 5.1)</td>
</tr>
<tr>
<td>Message</td>
<td>[7E 10 46 79 71 D2 6E</td>
<td>(Note that this is the bit by bit complement of the SOM.)</td>
</tr>
<tr>
<td>Table Value:</td>
<td>56]</td>
<td></td>
</tr>
<tr>
<td>EOM</td>
<td>Generated PN Sequence:</td>
<td></td>
</tr>
<tr>
<td>(64 bits</td>
<td>0x81F79D6171B48995</td>
<td>The message as a whole is delimited by a Start of Message (SOM) and an End of Message</td>
</tr>
<tr>
<td>long)</td>
<td></td>
<td>(EOM). (Sections 2.1 and 5.1)</td>
</tr>
<tr>
<td>Message</td>
<td>[81 EF B9 86 8E 2D 91 A9]</td>
<td></td>
</tr>
<tr>
<td>Table Value:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.5-3 Miscellaneous SCIP Signaling Constants (Cont.)

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value(s)</th>
<th>Use(s) for the Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>START (64 bits long)</td>
<td>Generated PN Sequence:</td>
<td>Used to detect the start of full bandwidth application traffic. (Sections 3 and 5.1.4)</td>
</tr>
<tr>
<td></td>
<td>0x7EACDDA4E2F28C20</td>
<td></td>
</tr>
<tr>
<td>Message Table Value:</td>
<td>[7E 35 BB 25 47 4F 31 04]</td>
<td></td>
</tr>
<tr>
<td>SM Header (16 bits long)</td>
<td>Generated PN Sequence:</td>
<td>The first 16 bits of the Sync Management (SM) frame which is sent during full bandwidth application traffic. (Section 3)</td>
</tr>
<tr>
<td></td>
<td>0xA8</td>
<td></td>
</tr>
<tr>
<td>Message Table Value:</td>
<td>[5E 13]</td>
<td></td>
</tr>
<tr>
<td>Bit Complement of SM Header (16 bits long)</td>
<td>Generated PN Sequence:</td>
<td>Replaces Header in Sync Management frames containing the first segment of the Partial Long Term Component. (Section 3)</td>
</tr>
<tr>
<td></td>
<td>0x8537</td>
<td></td>
</tr>
<tr>
<td>Message Table Value:</td>
<td>[A1 EC]</td>
<td></td>
</tr>
<tr>
<td>ES Header PN Sequence (16 bits long)</td>
<td>Generated PN Sequence:</td>
<td>The first 16 bits of the G.729D Encrypted Speech frame Header which is sent during Secure G.729D Voice application traffic. (Section 3.3)</td>
</tr>
<tr>
<td></td>
<td>0x5E26</td>
<td></td>
</tr>
<tr>
<td>Message Table Value:</td>
<td>[7A 64]</td>
<td></td>
</tr>
<tr>
<td>FILLER (64 bits long)</td>
<td>Generated PN Sequence:</td>
<td>An integer number of 64-bit pattern repetitions are transmitted following the Cryptosync and Multipoint Cryptosync messages. (Sections 3 and 5.1.3)</td>
</tr>
<tr>
<td></td>
<td>0x8153225B1D0D73DF</td>
<td></td>
</tr>
<tr>
<td>Message Table Value:</td>
<td>[81 CA 44 DA B8 B0 CE FB]</td>
<td>(Note that this is the bit by bit complement of the START.)</td>
</tr>
</tbody>
</table>

NOTES:
1. The Generated PN Sequence (read left to right and top to bottom if multiple lines) is specified in the bit order that the PN generator outputs the serial bit stream.
2. The Message Table Value is specified in the bit order that the PN sequences are represented (as octets) in the message format tables in this document.
3. The Message Table Value is passed, in ascending octet order, to the lower layers for transmission.
3.0 SCIP USER APPLICATION SIGNALING – Point-to-Point Operation

3.1 SCIP User Applications

Six user applications are currently defined for SCIP point-to-point implementations. They are:

[Note that a “reliable message transport” mechanism is also specified for the SCIP Electronic Rekey application – see Section 4.1.1.] The MELP Voice, Secure G.729D Voice, and Secure Best Effort Transport Asynchronous Data applications are full-bandwidth applications, since they are designed for use on connections where the information rate is equal, or approximately equal, to the available channel rate. Note that any of these applications may be used with a bearer service, such as IP, where the available transmission bandwidth may considerably exceed that of the application. It is not required to implement both the voice and data applications in all terminals. Voice-only and data-only products are allowed. Clear 2400 bps MELP Voice is optional in all cases. Detailed transmission formats for the SCIP user applications are specified in Sections 3.3 (voice) and 3.4 (data). The signaling in this Section is shown octet aligned. However it may be carried on networks that do not preserve octet alignment. Therefore, the SCIP receiver shall be capable of recovering and processing the SCIP signaling shown herein even if it is not octet aligned when it is received.

3.2 Application Start-up/Restart Signaling

3.2.1 Full Bandwidth Applications

Full-bandwidth applications (e.g., Secure MELP Voice, Secure G.729D Voice, and Secure Best Effort Transport Asynchronous Data) are required to bypass the Transport Layer functionality when they are invoked. This shall be accomplished as specified in the following paragraphs.

There are three cases of full-bandwidth application start-up/restart signaling: the case where a Cryptosync message exchange has occurred, the case of clear voice start-up, and the case of a restart following an interruption where only Notification and REPORT messages have been exchanged. In addition, there is a full bandwidth Application Timeout (specified in Section 3.2.1.1) associated with all three cases.

For start-up/restart after a Cryptosync exchange, a terminal is ready to transition to full bandwidth application signaling when acknowledgments have been transmitted and received for all frames of the Cryptosync messages. For this case, the terminal shall transmit an integer number of repetitions of FILLER not less than 100 milliseconds duration. The START pattern shall follow FILLER as soon as any frames queued at the Transport Layer are transmitted and, except for REPORT messages, are acknowledged. For start-up of the Clear MELP Voice application, a terminal is ready to transition to full bandwidth application signaling when the final call setup message has been transmitted and acknowledged and the user has enabled...
nonsecure operation. For this case, the terminal shall transmit the START pattern, without FILLER, as soon as any frames queued at the Transport Layer are transmitted and, except for REPORT messages, are acknowledged. For restart after full bandwidth traffic has been interrupted by the transmission of a Notification (Secure Dial, or Attention) or a REPORT message, the START pattern shall be transmitted, without FILLER, as soon as all frames queued at the Transport Layer are transmitted and, except for REPORT messages, are acknowledged.

Transmission of the START pattern shall be followed by full bandwidth traffic when it is available. The START pattern shall be transmitted even if no full bandwidth traffic is available for transmission (because of the Application Timeout – see Section 3.2.1.1). Upon receipt of a START pattern, a terminal shall begin looking for full bandwidth traffic. The format and length of FILLER and START patterns are defined in Section 2.5.3. Full bandwidth traffic transmission formats include Secure MELP Voice (both Blank and Burst and Burst w/o Blank – Sections 3.3.1.1 and 3.3.1.2, respectively), Clear MELP Voice (Section 3.3.1.3), Secure G.729D Voice (Section 3.3.2), and Secure Best Effort Transport Asynchronous Data (Section 3.4.2).

Note that start-up/restart applies to secure call setup, Two-Way Resync and Mode Change, and includes the case where both Cryptosync and Notification Messages are transmitted during a break in full bandwidth traffic. This case is illustrated in Figure 2.2-1 for secure call setup, in Figure 2.3-1(d) for Mode Change, and in Figure 2.3-1(e) for Two-Way Resync. Restart after transmission of a Notification or a REPORT message is illustrated in Figure 2.1-1(c) at the Transport Layer and in Figure 2.3-1(c) at the Message Layer.

3.2.1.1 Application Timeout

As specified above, a terminal transmits the START pattern when it is ready to start or restart full bandwidth traffic. An Application Timeout shall be utilized to ensure that both terminals transition to full bandwidth traffic. A suggested initial value for the Application Timeout is given in Table 2.4-1. Processing associated with the Application Timeout is shown in Figure 3.2-1.
NOTES:
1. This includes the case where the terminal is ready to transition prior to entering the Transmit Wait/No Frames Enqueued state.
2. The 'START' may be preceded by FILLER (see Section 3.2.1).
3. This could be an ESCAPE/'START'.

Figure 3.2-1 Application Timeout Processing

Two processing substates are associated with the Application Timeout. These are the full bandwidth transmit (START not received) substate and the full bandwidth transmit (START received) substate.

When a terminal has completed transmitting a START pattern, if a START pattern has not yet been received from the far end, it shall start an Application Timer and enter the full bandwidth transmit (START not received) substate. If the terminal has already received a START pattern, it shall enter the full bandwidth transmit (START received) substate without starting the Application Timer.

When a START pattern is received while the Application Timer is running, the terminal shall stop the Timer and enter the full bandwidth transmit (START received) substate.
If an Application Timeout occurs before a START pattern is received, the terminal shall transmit the ESCAPE/START (the ESCAPE pattern followed immediately by the START pattern), restart the Application Timer, and remain in the full bandwidth transmit (START not received) substate.

When the Application Timer has been stopped, a terminal may, under exception conditions, receive another ESCAPE/START. If this occurs, the terminal shall transmit another ESCAPE/START and continue in the full bandwidth transmit (START received) substate. The Application Timer is not restarted.

Editor's Note: It is important that the Application Timeout value always be greater than the round-trip path delay; otherwise, the terminals may fall into continuous ‘ping-pong’ retransmissions of the ESCAPE/START patterns. The recommended initial value for the Application Timeout in Table 2.4-1 should be adequate for most, if not all, connections.

3.2.2 Reliable Transport Applications

Applications defined as reliable transport (e.g., Secure Reliable Transport Asynchronous Data) are required to retain the Transport Layer functionality after completing call setup or Mode Change signaling. This is accomplished as follows.

When a reliable transport application has been chosen in the initial SCIP call setup or Mode Change signaling, the application shall begin when the following conditions have been met:

(a) the final SCIP call setup or control message has been transmitted,

(b) there are no remaining outstanding Transport Layer frames in the final SCIP call setup or control message received from the far end terminal, and

(c) all outstanding Transport Layer frames have been acknowledged for the last message transmitted.

When these conditions have been met, the application shall begin transmitting reliable transport application messages (e.g., Secure Reliable Transport Asynchronous Data messages), when they are available, without terminating the Transport Layer. FILLER and START patterns shall not be sent following call setup or control signaling, since the Transport Layer functionality is not being bypassed. Therefore, there is no Application Timeout. Likewise, ESCAPE shall not be sent when transitioning back to call control signaling.
3.3 Secure Voice Applications

3.3.1 Secure MELP Voice

Two variants of Secure MELP Voice are defined. These are 2400 bps Blank and Burst and Burst w/o Blank. Both variants utilize a superframe structure consisting of a Sync Management frame followed by MELP frames. In 2400 bps Blank and Burst the first MELP frame of a superframe is replaced with a Sync Management frame. In Burst w/o Blank, a Sync Management frame is inserted prior to the first MELP frame. (Thus in Blank and Burst, the superframe is 24 frames in length, while in Burst w/o Blank, the superframe is 25 frames in length.) All instances of the term MELP in this document may refer to either MELP as defined in MIL-STD-3005 or 2400 bps MELPe as defined in NATO STANAG 4591. Although MELPe is the preferred voice coder, the bit streams for both specifications are identical; therefore, full compatibility is maintained.

Editor's Note: Burst w/o Blank MELP requires a channel capacity greater than 2400 bps.

3.3.1.1 Secure 2400 bps MELP Voice – Blank and Burst

For Secure 2400 bps Blank and Burst MELP Voice, a Sync Management frame is substituted periodically for a vocoder frame. The vocoder frame that would normally have been transmitted during the Sync Management frame transmission interval is discarded. The Sync Management frame contains information that allows late-entry cryptographic synchronization as well as cryptographic synchronization maintenance.

Secure 2400 bps Blank and Burst MELP Voice shall be transmitted in a "superframe" consisting of a 54-bit Sync Management frame followed by 23 54-bit MELP vocoder frames, except when shortened by DTX action (see Section 3.3.1.4) or by the transmission of an ESCAPE to return to framed operation. To provide octet alignment on networks that require it, two, four, or six zero bits of padding may be postpended if the length of a shortened superframe is not a multiple of eight bits.

Editor's Note: While the superframe size is currently defined to be 24 frames for Blank and Burst, if problems are found during field testing this may be changed and/or may be made negotiable.

An example of Secure 2400 bps Blank and Burst MELP Voice transmission is shown in Figure 3.3-1. Note that the superframe always begins with a Sync Management frame to facilitate vocoder frame synchronization following a silence interval in implementations utilizing Voice Activity Detection. Note also that except for the first superframe following a gap in speech, the first vocoder frame shall be discarded (blanked) and replaced by the Sync Management frame. (See Appendix B.6 for the case of the first superframe following a gap in speech.) In all cases, however, the first MELP frame actually transmitted in a superframe is encrypted using the second half of the first state vector value for that superframe.
The contents of the 54-bit MELP vocoder frame, representing 22.5 msec. of speech, shall be as specified in MIL-STD-3005 or NATO STANAG 4591. In particular, bit 1 is as defined therein. The alternating 1/0 sync bit in the first MELP vocoder frame transmitted may have either value, and the receiver must be prepared to accept either value.

Figure 3.3-1 Secure MELP Voice Transmission Format – Blank and Burst

3.3.1.1 Sync Management Frame

The Sync Management frame shall be transmitted as the first frame of each Secure 2400 bps Blank and Burst MELP Voice superframe. Its format shall be as shown in Figure 3.3-2. The Sync Management frame is not encrypted.

Figure 3.3-2 Sync Management Frame Format – Blank and Burst

The contents of the Secure 2400 bps Blank and Burst MELP Voice Sync Management frame are shown in Table 3.3-1. The fixed 16-bit Header shall be the 16-bit PN sequence defined in Section 2.5.3. The bits of the Header shall be inverted in a Sync Management frame that contains the first segment of the Long Component. The Partial Long Component and the Short...
Component refer to encryption parameters that are specified in SCIP-23x. The bit transmission order for the Sync Management frame is shown in Table 3.3-2.

The CRC is an 8-bit frame check sequence that protects the Partial Long Component and Short Component fields. Its generator polynomial is \(P(x) = x^8 + x^6 + x + 1 \). The CRC shall be computed as follows. Let \(S(x) \) be the polynomial representing the 30 bits of the Sync Management frame beginning with the most significant bit of the Partial Long Component and extending, in the order that the bits are transmitted, through the least significant bit of the Short Component. The most significant bit of the Partial Long Component is the coefficient of the highest degree term of \(S(x) \). The transmitted CRC checksum, \(F(x) \), shall be the ones complement of the remainder of \((x^8S(x) + x^{30}(x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1))/P(x) \). Note that multiplying \(S(x) \) by \(x^8 \) is equivalent to shifting \(S(x) \) eight places to provide the space for the 8-bit CRC checksum, and adding \(x^{30}(x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) \) to \(x^8S(x) \) is equivalent to inverting the first eight bits of \(S(x) \). \(F(x) \) is then added to \(x^8S(x) \) forming the 38-bit Sync Management frame, exclusive of the Header. The coefficient of the \(x^7 \) term of \(F(x) \) shall be transmitted immediately following the least significant bit of the Short Component (see Table 3.3-2).

Editor's Note: Inverting the first eight bits of \(S(x) \) can also be accomplished in a shift register implementation by setting the register to all "ones" initially. This permits the receiver to detect erroneous addition or deletion of zero bits at the leading end of \(S(x) \). Complementing the remainder permits the receiver to detect addition or deletion of trailing zeros that may appear as a result of errors. At the receiver, the shift register is again set to all "ones" initially, and the CRC is computed over the received \(S(x) \). If the computed and received CRC are the same value, there are no errors.

Table 3.3-1 Sync Management Frame Contents – Blank and Burst

<table>
<thead>
<tr>
<th>Field</th>
<th>Length (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header (PN Sequence)</td>
<td>16</td>
</tr>
<tr>
<td>Partial Long Component</td>
<td>16</td>
</tr>
<tr>
<td>Short Component</td>
<td>14</td>
</tr>
<tr>
<td>CRC</td>
<td>8</td>
</tr>
</tbody>
</table>

Editor's Note: The SCIP cryptography and the use of the Long and Short Components transmitted in the Sync Management frame are defined in SCIP-23x.
3.3.1.1.2 Encryption and Transmission Ordering

MELP vocoder data is generated in 54-bit frames. Vocoder frames may be padded to 56 bits (to provide octet alignment if required) prior to encryption, but only the output bits corresponding to the first 54 bits of the input shall be transmitted. Data ordering for encrypting MELP vocoder data is specified in SCIP-230 or SCIP-231, Section 4.1.1.1; or SCIP-232, Section 4.1.1. Note that the vocoder frames that are deleted to allow for insertion of Sync Management frames shall be deleted following encryption.

Encrypted MELP vocoder frames shall have Sync Management frames inserted (in place of the deleted vocoder frames) and shall be formatted into superframes as shown in Table 3.3-2. The superframes shall then be passed, in ascending octet order beginning with the first octet of the Header, to the lower layers for transmission. If the length of a shortened superframe is not a multiple of eight bits, sufficient padding bits may be added to make the resulting padded superframe a multiple of eight bits, if the underlying transport service requires octet alignment.
Table 3.3-2 Secure MELP Transmission Bit Ordering – Blank and Burst

<table>
<thead>
<tr>
<th>Bits (msb)</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1 (lsb)</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header (PN Sequence)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Partial Long Component</td>
<td>b8</td>
<td>b9</td>
<td>b10</td>
<td>b11</td>
<td>b12</td>
<td>b13</td>
<td>b14</td>
<td>b15-msb</td>
<td>3</td>
</tr>
<tr>
<td>b0-lsb</td>
<td>b1</td>
<td>b2</td>
<td>b3</td>
<td>b4</td>
<td>b5</td>
<td>b6</td>
<td>b7</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Short Component</td>
<td>b6</td>
<td>b7</td>
<td>b8</td>
<td>b9</td>
<td>b10</td>
<td>b11</td>
<td>b12</td>
<td>b13-msb</td>
<td>5</td>
</tr>
<tr>
<td>CRC</td>
<td>b6</td>
<td>b7-msb</td>
<td>b0-lsb</td>
<td>b1</td>
<td>b2</td>
<td>b3</td>
<td>b4</td>
<td>b5</td>
<td>6</td>
</tr>
<tr>
<td>MELP Frame 2</td>
<td>b2</td>
<td>b1</td>
<td>b0-lsb</td>
<td>b1</td>
<td>b2</td>
<td>b3</td>
<td>b4</td>
<td>b5</td>
<td>7</td>
</tr>
<tr>
<td>b10</td>
<td>b9</td>
<td>b8</td>
<td>b7</td>
<td>b6</td>
<td>b5</td>
<td>b4</td>
<td>b3</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>MELP Frame 3</td>
<td>b4</td>
<td>b3</td>
<td>b2</td>
<td>b1</td>
<td>b54</td>
<td>b53</td>
<td>b52</td>
<td>b51</td>
<td>14</td>
</tr>
<tr>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>156</td>
</tr>
<tr>
<td>MELP Frame 24</td>
<td>b6</td>
<td>b5</td>
<td>b4</td>
<td>b3</td>
<td>b2</td>
<td>b1</td>
<td>b54</td>
<td>b53</td>
<td>162</td>
</tr>
<tr>
<td>b54</td>
<td>b53</td>
<td>b52</td>
<td>b51</td>
<td>b50</td>
<td>b49</td>
<td>b48</td>
<td>b47</td>
<td></td>
<td>162</td>
</tr>
</tbody>
</table>
3.3.1.2 Secure MELP Voice – Burst w/o Blank

For Secure Burst w/o Blank MELP Voice, a Sync Management frame is inserted periodically between vocoder frames. The Sync Management frame contains information that allows late-entry cryptographic synchronization as well as cryptographic synchronization maintenance.

Secure Burst w/o Blank MELP Voice shall be transmitted in a "superframe" consisting of a 56-bit Sync Management frame followed by 24 56-bit MELP frames (54 MELP vocoder bits plus two padding bits), except when shortened by DTX action (see Section 3.3.1.4) or by the transmission of an ESCAPE to return to framed operation.

Editor's Note: While the superframe size is currently defined to be 25 frames for Burst w/o Blank, if problems are found during field testing this may be changed and/or may be made negotiable.

An example of Secure Burst w/o Blank MELP Voice transmission is shown in Figure 3.3-3. Note that the superframe always begins with a Sync Management frame to facilitate vocoder frame synchronization following a silence interval in implementations utilizing Voice Activity Detection.

The contents of the 54-bit MELP vocoder output frame, representing 22.5 msec. of speech, shall be as specified in MIL-STD-3005 or NATO STANAG 4591. In particular, bit 1 is as defined therein. The alternating 1/0 sync bit in the first MELP frame transmitted may have either value, and the receiver must be prepared to accept either value. Two padding bits shall be added to the vocoder output as specified in SCIP-230 or SCIP-231, Section 4.1.1.1.1; or SCIP-232, Section 4.1.1.1.
3.3.1.2.1 Sync Management Frame

The Sync Management frame shall be transmitted as the first frame of the Secure Burst w/o Blank MELP Voice superframe. Its format shall be as shown in Figure 3.3-4.

The contents of the Secure Burst w/o Blank MELP Voice Sync Management frame are shown in Table 3.3-3. The Header, Partial Long Component, and Short Component shall be the same as that specified for Secure Blank and Burst MELP Voice (see Section 3.3.1.1.1). The "PLC Index" field consists of two bits that shall be set as defined in SCIP-23x.

The CRC protects the Partial Long Component, Short Component, and PLC Index fields. It shall be computed over the 32 bits of the Sync Management frame beginning with the most significant bit of the Partial Long Component and extending, in the order the bits are transmitted, through the least significant bit of the PLC Index. Except for the additional field covered (PLC Index), the transmitted CRC checksum shall be calculated and transmitted as defined in Section 3.3.1.1.1.
The bit transmission order for the Sync Management frame is shown in Table 3.3-4.

Table 3.3-3 Sync Management Frame Contents – Burst w/o Blank

<table>
<thead>
<tr>
<th>Field</th>
<th>Length (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header (PN Sequence)</td>
<td>16</td>
</tr>
<tr>
<td>Partial Long Component</td>
<td>16</td>
</tr>
<tr>
<td>Short Component</td>
<td>14</td>
</tr>
<tr>
<td>PLC Index</td>
<td>2</td>
</tr>
<tr>
<td>CRC</td>
<td>8</td>
</tr>
</tbody>
</table>

3.3.1.2.2 Encryption and Transmission Ordering

MELP vocoder data is generated in 54-bit frames. Vocoder output frames shall be padded to 56 bits (to provide octet alignment). (The padding bits shall be removed from received MELP frames prior to passing to the vocoder.) Data ordering for encrypting MELP vocoder data is specified in SCIP-230 or SCIP-231, Section 4.1.1.1; or SCIP-232, Section 4.1.1.1.

Encrypted MELP frames shall have Sync Management frames inserted and shall be formatted into superframes as shown in Table 3.3-4. The superframes shall then be passed, in ascending octet order beginning with the first octet of the Header, to the lower layers for transmission.
Table 3.3-4 Secure MELP Transmission Bit Ordering – Burst w/o Blank

<table>
<thead>
<tr>
<th>Bits (msb)</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1 (lsb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header (PN Sequence)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Partial Long Component</td>
<td>b8</td>
<td>b9</td>
<td>b10</td>
<td>b11</td>
<td>b12</td>
<td>b13</td>
<td>b14</td>
<td>b15-msb</td>
</tr>
<tr>
<td></td>
<td>b0-lsb</td>
<td>b1</td>
<td>b2</td>
<td>b3</td>
<td>b4</td>
<td>b5</td>
<td>b6</td>
<td>b7</td>
</tr>
<tr>
<td>Short Component</td>
<td>b6</td>
<td>b7</td>
<td>b8</td>
<td>b9</td>
<td>b10</td>
<td>b11</td>
<td>b12</td>
<td>b13-msb</td>
</tr>
<tr>
<td>PLC Index</td>
<td>b0-lsb</td>
<td>b1</td>
<td>b2</td>
<td>b3</td>
<td>b4</td>
<td>b5</td>
<td>b0-lsb</td>
<td>b1</td>
</tr>
<tr>
<td>CRC</td>
<td>b0-lsb</td>
<td>b1</td>
<td>b2</td>
<td>b3</td>
<td>b4</td>
<td>b5</td>
<td>b6</td>
<td>b7-msb</td>
</tr>
<tr>
<td>MELP Frame 1</td>
<td>b8</td>
<td>b7</td>
<td>b6</td>
<td>b5</td>
<td>b4</td>
<td>b3</td>
<td>b2</td>
<td>b1</td>
</tr>
<tr>
<td>Padding Bits</td>
<td>X</td>
<td>X</td>
<td>b54</td>
<td>b53</td>
<td>b52</td>
<td>b51</td>
<td>b50</td>
<td>b49</td>
</tr>
<tr>
<td>MELP Frame 2</td>
<td>b8</td>
<td>b7</td>
<td>b6</td>
<td>b5</td>
<td>b4</td>
<td>b3</td>
<td>b2</td>
<td>b1</td>
</tr>
<tr>
<td>Padding Bits</td>
<td>X</td>
<td>X</td>
<td>b54</td>
<td>b53</td>
<td>b52</td>
<td>b51</td>
<td>b50</td>
<td>b49</td>
</tr>
<tr>
<td>MELP Frame 24</td>
<td>b8</td>
<td>b7</td>
<td>b6</td>
<td>b5</td>
<td>b4</td>
<td>b3</td>
<td>b2</td>
<td>b1</td>
</tr>
<tr>
<td>Padding Bits</td>
<td>X</td>
<td>X</td>
<td>b54</td>
<td>b53</td>
<td>b52</td>
<td>b51</td>
<td>b50</td>
<td>b49</td>
</tr>
</tbody>
</table>
3.3.1.3 Clear MELP Voice – Blank and Burst

Signaling for Clear MELP Voice, when it is supported, will be in a "Blank and Burst" format. This means that a Sync Management frame is substituted periodically for a vocoder frame. The vocoder frame that would normally have been transmitted during the Sync Management frame transmission interval is discarded.

Clear MELP Voice shall be transmitted in a "superframe" consisting of a 54-bit Sync Management frame followed by 23 54-bit MELP vocoder frames, except when shortened by DTX action (see Section 3.3.1.4) or by the transmission of an ESCAPE to return to framed operation. To provide octet alignment on networks that require it, two, four, or six zero bits of padding may be postpended if the length of a shortened superframe is not a multiple of eight bits.

Editor's Note: While the superframe size is currently defined to be 24 frames for Clear MELP Voice, if problems are found during field testing this may be changed and/or may be made negotiable.

An example of Clear MELP Voice transmission is shown in Figure 3.3-5. Note that the superframe begins with a Sync Management frame to facilitate vocoder frame synchronization following a silence interval. Note also that except for the first superframe following a gap in speech, the first vocoder frame shall be discarded (blanked) and replaced by the Sync Management frame. (See Appendix B.6 for the case of the first superframe following a gap in speech.)

The contents of the 54-bit MELP vocoder frame, representing 22.5 msec. of speech, shall be as specified in MIL-STD-3005 or NATO STANAG 4591. In particular, bit 1 is as defined therein. The alternating 1/0 sync bit in the first MELP vocoder frame transmitted may have either value, and the receiver must be prepared to accept either value.
3.3.1.3.1 Sync Management Frame

The Sync Management frame shall be transmitted as the first frame of each Clear MELP Voice superframe. Its format shall be as shown in Figure 3.3-6.

Figure 3.3-6 Clear MELP Voice Sync Management Frame Format

The contents of the Clear MELP Voice Sync Management frame are shown in Table 3.3-5. The fixed 16-bit Header shall be the 16-bit PN sequence defined in Table 2.5-3. Following the Header will be 38 bits of filler, each of which is set to zero. The bit transmission order for the Sync Management frame is shown in Table 3.3-6.
Table 3.3-5 Clear MELP Voice Sync Management Frame Contents

<table>
<thead>
<tr>
<th>Field</th>
<th>Length (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header (PN Sequence)</td>
<td>16</td>
</tr>
<tr>
<td>Zero Filler</td>
<td>38</td>
</tr>
</tbody>
</table>

3.3.1.3.2 Transmission Ordering

MELP vocoder data is generated in 54-bit frames. Clear MELP Voice vocoder frames shall have Sync Management frames inserted in place of the deleted vocoder frames, and shall be formatted into superframes as shown in Table 3.3-6. The superframes shall then be passed, in ascending octet order beginning with the first octet of the Header, to the lower layers for transmission. If the length of a shortened superframe is not a multiple of eight bits, sufficient padding bits may be added to make the resulting padded superframe a multiple of eight bits, if the underlying transport service requires octet alignment.

Table 3.3-6 Clear MELP Voice Transmission Bit Ordering – Blank and Burst

<table>
<thead>
<tr>
<th>8 (msb)</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1 (lsb)</th>
<th>↔ Bits Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header (PN Sequence)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0 1 1 1 1 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0 0 0 0 1 0 0 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Zero Filler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MELP Frame 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b2 b1 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>b10 b9 b8 b7 b6 b5 b4 b3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MELP Frame 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b4 b3 b2 b1 b54 b53 b52 b51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MELP Frame 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b6 b5 b4 b3 b2 b1 b54 b53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>156</td>
</tr>
<tr>
<td>b54 b53 b52 b51 b50 b49 b48 b47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>162</td>
</tr>
</tbody>
</table>
3.3.1.4 Voice Activity Factor Processing

Two options are defined for SCIP MELP Voice. These are Discontinuous Voice Transmission (DTX) and Force Continuous Transmission (FCT), as described below. Where terminals have implemented both DTX and FCT, Secure Voice Options are provided in Section 2.2.6.2 for negotiating which one to use.

Editor's Note: A cellular phone may support Discontinuous Voice Transmission so that it will cease transmitting when the user stops speaking. However, for security reasons, it may be required that the phone be set for Force Continuous Transmission. All current (as of 7/02) Secure MELP Voice implementations are FCT only.

3.3.1.4.1 Discontinuous Voice Transmission

Discontinuous voice transmission (DTX) is specified in Appendix B. This Section only addresses the signaling associated with it.

During DTX operation, when voice activity is initially detected a superframe shall be formatted and transmitted. For as long as voice is detected, full length superframes (defined in the sections that define the individual applications) shall be continuously transmitted. When silence is detected, two or more Grace Period frames (defined in Appendix B.3) shall be transmitted in place of the corresponding number of MELP frames. Transmission shall then cease for at least \(n \) MELP frames, where \(n \) is the Minimum Blank Period (defined in Appendix B.4). The final superframe before transmission ceases may be shorter than a full length superframe; it contains a Sync Management frame, zero or more MELP frames, and one or more Grace Period frames. After a period of silence, when voice is again detected, transmission of MELP frames is restarted. The first frame transmitted following a gap shall be a Sync Management frame, regardless of the duration of the gap. This Sync Management frame shall contain the next value in the cyclic rotation of Partial Long Term Components that would normally follow the value transmitted in the last Sync Management frame prior to the gap. The crypto is not flywheeled during gaps in voice transmission. MELP frame transmission continues with full length superframes until silence is again detected.

3.3.1.4.2 Force Continuous Transmission

Force Continuous Transmission (FCT) applies to both Secure MELP Voice and Clear MELP Voice applications.

During FCT operation, full length superframes shall be transmitted continuously between the START (see Section 3.2) and the ESCAPE (see Section 2.1.4). The MELP vocoder is run continuously, and all frames that are generated (excluding blanked frames) are transmitted.
3.3.2 Secure G.729D Voice

Secure G.729D Voice is transmitted in a Burst w/o Blank superframe structure with a Sync Management (SM) frame and Encrypted Speech (ES) frame Headers inserted periodically between vocoder frames. The Sync Management frame contains information that allows late-entry cryptographic synchronization as well as cryptographic synchronization maintenance. The Encrypted Speech frame Headers allow resynchronization between Sync Management frames. The 6400 bps vocoder output plus the framing requires a channel capacity of at least 7200 bps.

Secure G.729D Voice shall be transmitted in a "superframe" consisting of a 64-bit Sync Management frame followed by up to eight Encrypted Speech frames. Each Encrypted Speech frame shall consist of a 24-bit Header followed by four 64-bit G.729D Voice frames.

An example of Secure G.729D Voice transmission highlighting the superframe and Encrypted Speech frame structure is shown in Figure 3.3-7. Detailed breakouts of a superframe and an Encrypted Speech frame are shown in Figure 3.3-8. Note that the superframe always begins with a Sync Management frame to facilitate frame synchronization following an interruption, e.g., a period of framed operation.

![Diagram of Secure G.729D Voice Transmission]

NOTES:
SM = Sync Management Frame
H = Encrypted Speech frame Header
V = G.729D Vocoder Frame
* = ACKed via Report Message
** = Application re-entry point after Notification Message processing

Figure 3.3-7 Secure G.729D Voice Transmission
Full-length superframes shall be transmitted except when shortened by DTX action (see Section 3.3.2.4) or by the transmission of an ESCAPE to return to framed operation. A shortened Secure G.729D Voice superframe (resulting from an interruption) shall be terminated only at the end of an Encrypted Speech frame. An example of a Secure G.729D Voice superframe interruption and the subsequent restart of Secure G.729D Voice transmission is shown in Figure 3.3-9. Note that this figure shows the case where the interruption does not include the transmission of a Cryptosync message. If a Cryptosync message is transmitted, e.g., in a Two-Way Resync, the START is preceded by FILLER, and the Partial Short Component (PSC) is set as specified in SCIP-230 or SCIP-231, Section 4.1.1.2.1; or SCIP-232, Section 4.1.2.1.

Figure 3.3-8 Secure G.729D Voice Superframe Details

Figure 3.3-9 Secure G.729D Voice Escape and Return Example (No Cryptosync)
3.3.2.1 Secure G.729D Voice Frame

The 64-bit G.729D vocoder output frame, representing 10 msec. of speech, shall be as specified in ITU-T Recommendation G.729 Annex D. The frame parameters and their lengths, as specified in Table 8/G.729 (Recommendation G.729), but with the specific parameters and lengths as modified by Table D.1/G.729 (Recommendation G.729 Annex D), are shown in Table 3.3-7.

Table 3.3-7 Secure G.729D Voice Frame Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td>1</td>
</tr>
<tr>
<td>L1</td>
<td>7</td>
</tr>
<tr>
<td>L2</td>
<td>5</td>
</tr>
<tr>
<td>L3</td>
<td>5</td>
</tr>
<tr>
<td>P1</td>
<td>8</td>
</tr>
<tr>
<td>C1</td>
<td>9</td>
</tr>
<tr>
<td>S1</td>
<td>2</td>
</tr>
<tr>
<td>GA1</td>
<td>3</td>
</tr>
<tr>
<td>GB1</td>
<td>3</td>
</tr>
<tr>
<td>P2</td>
<td>4</td>
</tr>
<tr>
<td>C2</td>
<td>9</td>
</tr>
<tr>
<td>S2</td>
<td>2</td>
</tr>
<tr>
<td>GA2</td>
<td>3</td>
</tr>
<tr>
<td>GB2</td>
<td>3</td>
</tr>
</tbody>
</table>

3.3.2.1.1 Secure G.729D Voice Transmission Format

The transmission format for Secure G.729D Voice is based on the bit transmission ordering specified in the ITU standards, specifically in Table 8/G.729. That is, the frame parameters shall be transmitted in the order shown in Table 3.3-7. Also, the individual parameters shall be transmitted most significant bit first. The frame transmission ordering is shown in Table 3.3-8.
Table 3.3-8 G.729D Vocoder Frame Bit Transmission Order

<table>
<thead>
<tr>
<th>Frame Bit #</th>
<th>Parameter -[bit #]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L0-[0]</td>
<td>17</td>
<td>L3-[1]</td>
<td>33</td>
<td>C1-[2]</td>
<td>49</td>
<td>C2-[7]</td>
</tr>
<tr>
<td>2</td>
<td>L1-[6]</td>
<td>18</td>
<td>L3-[0]</td>
<td>34</td>
<td>C1-[1]</td>
<td>50</td>
<td>C2-[6]</td>
</tr>
<tr>
<td>3</td>
<td>L1-[5]</td>
<td>19</td>
<td>P1-[7]</td>
<td>35</td>
<td>C1-[0]</td>
<td>51</td>
<td>C2-[5]</td>
</tr>
<tr>
<td>5</td>
<td>L1-[3]</td>
<td>21</td>
<td>P1-[5]</td>
<td>37</td>
<td>S1-[0]</td>
<td>53</td>
<td>C2-[3]</td>
</tr>
<tr>
<td>8</td>
<td>L1-[0]</td>
<td>24</td>
<td>P1-[2]</td>
<td>40</td>
<td>GA1-[0]</td>
<td>56</td>
<td>C2-[0]</td>
</tr>
<tr>
<td>10</td>
<td>L2-[3]</td>
<td>26</td>
<td>P1-[0]</td>
<td>42</td>
<td>GB1-[1]</td>
<td>58</td>
<td>S2-[0]</td>
</tr>
<tr>
<td>11</td>
<td>L2-[2]</td>
<td>27</td>
<td>C1-[8]</td>
<td>43</td>
<td>GB1-[0]</td>
<td>59</td>
<td>GA2-[2]</td>
</tr>
<tr>
<td>13</td>
<td>L2-[0]</td>
<td>29</td>
<td>C1-[6]</td>
<td>45</td>
<td>P2-[2]</td>
<td>61</td>
<td>GA2-[0]</td>
</tr>
<tr>
<td>15</td>
<td>L3-[3]</td>
<td>31</td>
<td>C1-[4]</td>
<td>47</td>
<td>P2-[0]</td>
<td>63</td>
<td>GB2-[1]</td>
</tr>
<tr>
<td>16</td>
<td>L3-[2]</td>
<td>32</td>
<td>C1-[3]</td>
<td>48</td>
<td>C2-[8]</td>
<td>64</td>
<td>GB2-[0]</td>
</tr>
</tbody>
</table>

NOTES:
1. Bit 0 of a G.729D parameter is the least significant bit.

3.3.2.2 Sync Management Frame

The Sync Management frame shall be transmitted as the first frame of each Secure G.729D Voice superframe. Its format shall be as shown in Figure 3.3-10.

Figure 3.3-10 Secure G.729D Voice Sync Management Frame Format

The contents of the Secure G.729D Voice Sync Management frame are shown in Table 3.3-9. The SM Header, Partial Long Component, Short Component, PLC Index, and CRC shall be the same as that specified for Secure Burst w/o Blank MELP Voice (see Section 3.3.1.2.1). The
"Padding" field consists of eight bits that shall be set to zero. The bit transmission order for the Sync Management frame is shown in Table 3.3-11, octets 1 - 8.

Table 3.3-9 Secure G.729D Voice Sync Management Frame Contents

<table>
<thead>
<tr>
<th>Field</th>
<th>Length (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM Header (PN Sequence)</td>
<td>16</td>
</tr>
<tr>
<td>Partial Long Component</td>
<td>16</td>
</tr>
<tr>
<td>Short Component</td>
<td>14</td>
</tr>
<tr>
<td>PLC Index</td>
<td>2</td>
</tr>
<tr>
<td>CRC</td>
<td>8</td>
</tr>
<tr>
<td>(Padding)</td>
<td>8</td>
</tr>
</tbody>
</table>

3.3.2.3 Encrypted Speech Frame Header

The Encrypted Speech frame Header shall be transmitted at the beginning of each Encrypted Speech frame. Its format shall be as shown in Figure 3.3-11.

![Figure 3.3-11 Secure G.729D Voice Encrypted Speech Frame Header](image)

The contents of the Encrypted Speech frame Header are shown in Table 3.3-10. The fixed 16-bit ES Header PN sequence (different than the Sync Management frame Header) shall be as defined in Section 2.5.3. The Partial Short Component refers to an encryption parameter that is specified in SCIP-230 or SCIP-231, Section 4.1.1.2.1; or SCIP-232, Section 4.1.2.1. The bit transmission order for the Encrypted Speech frame Header is shown in Table 3.3-11, octets 9 - 11.

Table 3.3-10 Secure G.729D Voice Encrypted Speech Frame Header Contents

<table>
<thead>
<tr>
<th>Field</th>
<th>Length (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES PN Sequence</td>
<td>16</td>
</tr>
<tr>
<td>Partial Short Component</td>
<td>8</td>
</tr>
</tbody>
</table>
3.3.2.4 Encryption and Transmission Ordering

G.729D vocoder data is generated in 64-bit frames and formatted in the G.729D Vocoder Frame Bit Transmission Order (see Table 3.3-8). Encryption shall be as specified in SCIP-230 or SCIP-231, Section 4.1.1.2; or SCIP-232, Section 4.1.2.

Encrypted G.729D Voice frames shall have Sync Management frames and Encrypted Speech frame Headers inserted and shall be formatted into superframes as shown in Table 3.3-11. The superframes shall then be passed, in ascending octet order beginning with the first octet of the Sync Management frame Header, to the lower layers for transmission.

Table 3.3-11(a) Secure G.729D Voice Transmission Bit Ordering (Octets 1 - 8)

<table>
<thead>
<tr>
<th>Octets</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>msb</td>
<td>SM Header (PN Sequence)</td>
</tr>
<tr>
<td>7</td>
<td>lsb</td>
<td>0 1 0 1 1 1 1 0</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0 0 0 1 0 0 1 1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Partial Long Component</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>b8 b9 b10 b11 b12 b13 b14 b15-msb</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>b0-lsb b1 b2 b3 b4 b5 b6 b7</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Short Component</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>b6 b7 b8 b9 b10 b11 b12 b13-msb</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>PLC Index</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>b0-lsb b1-msb</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>CRC</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>b0-lsb b1 b2 b3 b4 b5 b6 b7-msb</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Padding</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

171
Table 3.3-11(b) Secure G.729D Voice Transmission Bit Ordering (Octets 9 - 288)

<table>
<thead>
<tr>
<th>Octets</th>
<th>Bits (lsb)</th>
<th>Bits (msb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encrypted Speech Frame 1</td>
<td>ES PN Sequence</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Partial Short Component</td>
<td>b0-LSB</td>
<td>b1</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>b8</td>
<td>b7</td>
<td>b6</td>
</tr>
<tr>
<td>⋮</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.729D Frame 1</td>
<td>b8</td>
<td>b7</td>
</tr>
<tr>
<td>64</td>
<td>63</td>
<td>62</td>
</tr>
<tr>
<td>64</td>
<td>63</td>
<td>62</td>
</tr>
<tr>
<td>G.729D Frame 4</td>
<td>b8</td>
<td>b7</td>
</tr>
<tr>
<td>281</td>
<td>280</td>
<td>279</td>
</tr>
<tr>
<td>Encrypted Speech Frame 8</td>
<td>ES PN Sequence</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Partial Short Component</td>
<td>b0-LSB</td>
<td>b1</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>b8</td>
<td>b7</td>
<td>b6</td>
</tr>
<tr>
<td>⋮</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.729D Frame 1</td>
<td>b8</td>
<td>b7</td>
</tr>
<tr>
<td>281</td>
<td>280</td>
<td>279</td>
</tr>
<tr>
<td>G.729D Frame 4</td>
<td>b8</td>
<td>b7</td>
</tr>
<tr>
<td>281</td>
<td>280</td>
<td>279</td>
</tr>
</tbody>
</table>
3.3.2.5 Discontinuous Voice Transmission

TBSL.

Editor's Note: It is expected that the SCIP approach to DTX will be compatible with G.729 Annex F; however, the details remain to be determined.

3.3.2.6 Force Continuous Transmission

During Force Continuous Transmission (FCT) operation, full-length superframes shall be transmitted continuously following the START (see Section 3.2) unless interrupted by the ESCAPE (see Section 2.1.4). The G.729D Active Voice Encoder is run continuously, and all frames that are generated are transmitted.

3.4 Secure Data Applications

Two secure asynchronous data applications are specified herein: Secure Reliable Transport Asynchronous Data (the SCIP MER data application defined in Section 3.4.1) and Secure Best Effort Transport Asynchronous Data (an optional SCIP data application defined in Section 3.4.2). Asynchronous Data Options may be defined in the future for additional data applications such as Fax or Chat.

3.4.1 Secure Reliable Transport (RT) Asynchronous Data

The Secure Reliable Transport Asynchronous Data application utilizes the same transport mechanisms as are used for secure call setup messages to deliver user data reliably. Framing, forward error correction, and residual error detection reduce the maximum throughput for this application to less than 65% of the channel rate.

Editor’s Note: The reliable transport application specified in this section may be applicable to synchronous data transmission as well, although issues such as indicating valid bits within an octet need to be addressed for synchronous data transmission.

The Secure Reliable Transport (RT) Asynchronous Data application uses the SCIP message transport mechanisms specified in Section 2.1 to provide reliable delivery of user data to a receiving terminal. Following initial call setup signaling or Mode Change signaling where the Secure RT Asynchronous Data application is chosen, the Transport Layer protocol remains in place and transports Secure RT Asynchronous Data messages. Secure RT Asynchronous Data messages contain a variable number of user data octets that have been input from the terminal's data port and encrypted prior to being placed into the User Data fields of these messages.
Since a reliable transport mechanism is used, all transmitted data will arrive at the receiver under most channel conditions. There is no opportunity for cryptosync to be lost, and late entry is not an issue for a reliable transport application, which is by definition point-to-point. Therefore, sync maintenance is not required in the Secure RT Asynchronous Data application.

Note that the reliable transport application specified in this section results in stateless data handling at the Transport Layer. That is, the Transport Layer does not require knowledge of the current terminal state (signaling vs. traffic).

Figure 3.4-1 illustrates the processing required for preparation of the Secure RT Asynchronous Data message.

![Figure 3.4-1 Secure RT Asynchronous Data Message Preparation](image)

3.4.1.1 Secure RT Asynchronous Data Transmission

Once the transition to the Secure RT Asynchronous Data application is complete, the terminal shall begin accepting plaintext asynchronous data characters at the user data port. Start and stop bits shall be removed prior to encryption and reinserted at the receiver following decryption. Plaintext octets (asynchronous data characters with start and stop bits removed) shall be encrypted and buffered until a sufficient number have been collected to create a Secure RT Asynchronous Data message. This message format is the same as that for other SCIP signaling messages, that is, it begins with a two-octet MID followed by a two-octet Message Length field and a one-octet Message Version field. These fields are not encrypted. The number of encrypted octets that are placed in each Secure RT Asynchronous Data message is left as an implementation option. This determination may be based on factors such as the user data port.
character rate, desired latency, and the cryptographic block size. A Secure RT Asynchronous Data message may contain as few as one user data octet or as many as 65,532 (the maximum allowed by the 16-bit Message Length field).

3.4.1.1 Encryption and Transmission Ordering

V.14 asynchronous data is input at the DTE interface as shown in Figure 3.4-2. The start and stop bits shall be removed and discarded. The 8-bit user data characters shall then be formatted into 14-octet blocks prior to encryption. If there are fewer than 14 octets to be transmitted, or if there are fewer than 14 octets remaining for the final block of a Secure RT Asynchronous Data message, zero padding may be used to complete a 14-octet block. However, the first octet of the following Secure RT Asynchronous Data message shall be encrypted using a new state vector. That is, the encryption of all Secure RT Asynchronous Data messages shall begin with a new state vector. Asynchronous DTE I/O formats other than V.14 may also be supported (e.g., a USB interface). In any DTE I/O format, the user data characters (octets) shall be extracted from the DTE I/O format and formatted into 14-octet blocks prior to encryption as illustrated for V.14. Details pertaining to Secure RT Asynchronous Data encryption may be found in SCIP-230, Sections 4.1.2.1 and 4.1.2.2, SCIP-231, Section 4.1.2.1, or SCIP-232, Sections 4.2.1 and 4.2.2.

DTE Data in:

<table>
<thead>
<tr>
<th>time -></th>
<th>lsb</th>
<th>msb</th>
<th>lsb</th>
<th>msb</th>
<th>lsb</th>
<th>msb</th>
<th>...</th>
<th>lsb</th>
<th>msb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>strt</td>
<td>b1</td>
<td>Char. 1</td>
<td>b8</td>
<td>stp</td>
<td>strt</td>
<td>b1</td>
<td>Char. 2</td>
<td>b8</td>
</tr>
</tbody>
</table>

Figure 3.4-2 V.14 Asynchronous Data Input Ordering

After the data has been encrypted, it shall be formatted into the Encrypted User Data Octets field of the Secure RT Asynchronous Data message as shown in Table 3.4-1. Encrypted padding octets (if present) shall be discarded. The Secure RT Asynchronous Data message shall then be passed to the Transport Layer for transmission.
Table 3.4-1 Secure RT Asynchronous Data Message Format

<table>
<thead>
<tr>
<th>Octets</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- **MID**
 - 0-MSB: 0 0 0 0 0 0 0 0
 - 0-LSB: 0 0 0 0 0 0 0 0

- **Source ID**
 - 0 1 0 0 0 0 0 0

- **Message Length**
 - X-MSB: X X X X X X X X
 - X-LSB: X X X X X X X X

- **Message Version**
 - 0 0 0 0 0 0 0 0

- **Encrypted User Data**
 - Octet 1: b8 b7 b6 b5 b4 b3 b2 b1
 - Octet n: b8 b7 b6 b5 b4 b3 b2 b1

- **Encrypted User Data**
 - Octet n: b8 b7 b6 b5 b4 b3 b2 b1

- **n = number of encrypted user data octets**

- For the Secure RT Asynchronous Data message the value of the MID is 0x0040.
- The Message Length shall contain the actual length of the message body (including the length of the Message Length field itself but not including the length of the MID field) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 3 and the low order bit being bit 1 of octet 4.
- For the version of the Secure RT Asynchronous Data message defined in this version of the Signaling Plan, the value of the Message Version field is 0x00.
- The Encrypted User Data Octets field contains a variable number of octets originally obtained from the user data port and encrypted before being placed into this field.
3.4.1.2 Message Transmission

Each complete Secure RT Asynchronous Data message shall be passed to the Transport Layer where the processes specified in Section 2.1, including SOM/EOM framing, frame counter, CRC, FEC, and ACK/NAK using REPORT messages, shall be used to provide reliable transmission to the far-end terminal.

Appropriate flow control procedures (e.g. RTS/CTS or XON/XOFF) shall be implemented at the user data port to prevent loss of data in the event data arrives faster than it can be transmitted over the communications channel. Note that a terminal may also flow control the communications channel receive data rate if necessary by delaying the normal frame acknowledgement at the Transport Layer.

If the DTE lowers Request to Send (RTS) while the Secure RT Asynchronous Data application is active, the terminal shall build and transmit a Secure RT Asynchronous Data message containing any buffered data, and then cease transmitting. When RTS is again activated, the terminal shall again start accepting octets from the user data port and building Secure RT Asynchronous Data messages. The crypto is not flywheeled during periods when the terminal is not transmitting.

3.4.1.2 Secure RT Asynchronous Data Message Reception

Following the transition from signaling to the Secure RT Asynchronous Data application, the receiving terminal’s Transport Layer shall continue to monitor the communications channel searching for incoming SOM patterns and the associated transport frames as described in Section 2.1.7. Payload data from the transport frames shall be transferred to the message layer, where Secure RT Asynchronous Data messages shall be verified and interpreted.

Ciphertext data extracted from the Encrypted User Data Octets field of each Secure RT Asynchronous Data message (see Table 3.4-1) shall be decrypted in the order shown in Figure 3.4-3. Start and stop bits shall then be reinserted, and the 10-bit data characters shall be forwarded to the user data port in the order shown in Figure 3.4-2 for V.14 asynchronous data. For asynchronous DTE I/O formats other than V.14 (e.g., a USB interface) received data shall be reformatted to the receiving DTE I/O format, which may be different than the sending DTE I/O format.

3.4.2 Secure Best Effort Transport (BET) Asynchronous Data

The Best Effort Transport (BET) Asynchronous Data application utilizes the channel capacity efficiently by extracting the asynchronous character octets from their I/O format (e.g., V.14 Start/Stop bits or USB Framing). The channel capacity saved by not transmitting the character framing allows Sync Management frames to be inserted into the transmitted data at periodic intervals.
Editor's Note: This data application was originally conceived to allow 2400 bps V.14 asynchronous data to be compressed sufficiently to allow SCIP overhead to be inserted in a 2400 bps channel. The data application scales to any data rate and is usable with asynchronous DTE I/O formats other than V.14.

This Section defines a secure data application that may optionally be supported by SCIP implementations.

Signaling for Secure BET Asynchronous Data shall be in a "Burst w/o Blank" format. The Sync Management frame contains information that allows cryptographic synchronization maintenance. No user data is discarded; the Sync Management frame is inserted between consecutive frames of user data. The discarding of start and stop bits ensures sufficient capacity to permit the transmission of the Sync Management frame.

Secure BET Asynchronous Data shall be transmitted in 162-octet "superframes" consisting of a 64-bit Sync Management frame followed by fourteen 11 octet asynchronous data frames (64/8 + 14*11 = 162 octets). An example of this is shown in Figure 3.4-3. A more detailed picture of a single superframe is shown in Figure 3.4-4. The superframe shall begin with a Sync Management frame, and each asynchronous data frame shall be composed of 0 to 10 user data characters, followed by 0 to 10 filler octets having the value 0x00, followed by a one octet Validity Count that consists of a 4-bit character Count field and a 4-bit Count Check field. Filler octets shall be used if no data is available from the DTE. The number of user data characters plus the number of filler octets in a data frame shall sum to ten. The value of the character Count field shall be set to the number of user data characters in the frame. Start and stop bits for the V.14 asynchronous data characters shall not be transmitted. No user data is discarded; the Sync Management frame shall precede the first 11-octet frame of user data and shall be inserted before the first 11-octet user data frame of each subsequent superframe.

Figure 3.4-3 Secure BET Asynchronous Data Transmission Format

NOTES:
SM = Sync Management Frame
D = 11-octet Async Data Frame
* = ACKed via Report Message
** = Application re-entry point after Notification Message processing
The value of the Count Check field is set based on the value of the character Count field. The correspondence is given in Table 3.4-2. Note that this combination of eight bits provides a Hamming distance of four and thus a capability to detect two bit errors and correct one.

Editor's Note: Bit b₁ is set to provide even parity in bits b₁, b₅, b₆, and b₇. Bit b₂ is set to provide even parity in bits b₂, b₅, b₆, and b₈. Bit b₃ is set to provide even parity in bits b₃, b₅, b₇, and b₈. Bit b₄ is set to provide even parity in all bits in the octet. This corresponds to encoding the Count field with a Hamming (7, 3) code augmented with an overall parity bit.

Table 3.4-2 Validity Count Field Values

<table>
<thead>
<tr>
<th>b₈ (msb)</th>
<th>Count</th>
<th>b₅ (lsb)</th>
<th>b₄ (msb)</th>
<th>Count Check</th>
<th>b₁ (lsb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0</td>
<td>0x0</td>
<td>0x0</td>
<td>0x0</td>
<td>0x0</td>
<td>0x0</td>
</tr>
<tr>
<td>0x1</td>
<td>0x7</td>
<td>0x7</td>
<td>0x7</td>
<td>0x7</td>
<td>0x7</td>
</tr>
<tr>
<td>0x2</td>
<td>0xB</td>
<td>0xB</td>
<td>0xB</td>
<td>0xB</td>
<td>0xB</td>
</tr>
<tr>
<td>0x3</td>
<td>0xC</td>
<td>0xC</td>
<td>0xC</td>
<td>0xC</td>
<td>0xC</td>
</tr>
<tr>
<td>0x4</td>
<td>0xD</td>
<td>0xD</td>
<td>0xD</td>
<td>0xD</td>
<td>0xD</td>
</tr>
<tr>
<td>0x5</td>
<td>0xA</td>
<td>0xA</td>
<td>0xA</td>
<td>0xA</td>
<td>0xA</td>
</tr>
<tr>
<td>0x6</td>
<td>0x6</td>
<td>0x6</td>
<td>0x6</td>
<td>0x6</td>
<td>0x6</td>
</tr>
<tr>
<td>0x7</td>
<td>0x1</td>
<td>0x1</td>
<td>0x1</td>
<td>0x1</td>
<td>0x1</td>
</tr>
<tr>
<td>0x8</td>
<td>0xE</td>
<td>0xE</td>
<td>0xE</td>
<td>0xE</td>
<td>0xE</td>
</tr>
<tr>
<td>0x9</td>
<td>0x9</td>
<td>0x9</td>
<td>0x9</td>
<td>0x9</td>
<td>0x9</td>
</tr>
<tr>
<td>0xA</td>
<td>0x5</td>
<td>0x5</td>
<td>0x5</td>
<td>0x5</td>
<td>0x5</td>
</tr>
</tbody>
</table>
3.4.2.1 Sync Management Frame

The Sync Management frame shall be transmitted as the first frame of each Secure BET Asynchronous Data superframe. Its format shall be as shown in Figure 3.4-5.

<table>
<thead>
<tr>
<th>HEADER (PN)</th>
<th>PARTIAL LONG COMPONENT</th>
<th>SHORT COMPONENT</th>
<th>PLC INDEX</th>
<th>CRC - 8</th>
<th>PADDING</th>
</tr>
</thead>
</table>

Figure 3.4-5 Sync Management Frame Format

The contents of the secure asynchronous data Sync Management frame are shown in Table 3.4-3. The Header, Partial Long Component, Short Component, PLC Index and CRC shall be the same as that specified for Secure Burst w/o Blank MELP Voice (see Section 3.3.1.2.1). The "Padding" field consists of eight bits that shall be set to zero. The bit transmission order for the Sync Management frame is shown in Table 3.4-4.

<table>
<thead>
<tr>
<th>Field</th>
<th>Length (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header (PN Sequence)</td>
<td>16</td>
</tr>
<tr>
<td>Partial Long Component</td>
<td>16</td>
</tr>
<tr>
<td>Short Component</td>
<td>14</td>
</tr>
<tr>
<td>PLC Index</td>
<td>2</td>
</tr>
<tr>
<td>CRC</td>
<td>8</td>
</tr>
<tr>
<td>(Padding)</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 3.4-3 Sync Management Frame Contents

3.4.2.2 Encryption and Transmission Ordering

V.14 asynchronous data is input at the DTE interface as shown in Figure 3.4-6. The start and stop bits shall be removed, and the 8-bit user data characters shall be encrypted. Asynchronous DTE I/O formats other than V.14 may also be supported (e.g., a USB interface). In any DTE I/O format, the user data characters (octets) shall be extracted from the DTE I/O format prior to encryption as illustrated for V.14.

DTE Data in:

Figure 3.4-6 V.14 Asynchronous Data Input Ordering
When the data has been encrypted, it shall be formatted into superframes as shown in Table 3.4-4. The superframes shall then be passed, in ascending octet order beginning with the first octet of the Header, to the lower layers for transmission.

Table 3.4-4 Secure BET Asynchronous Data Transmission Bit Ordering

<table>
<thead>
<tr>
<th>8 (msb)</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1 (lsb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header (PN Sequence)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Partial Long Component</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b8</td>
<td>b9</td>
<td>b10</td>
<td>b11</td>
<td>b12</td>
<td>b13</td>
<td>b14</td>
<td>b15-msb</td>
</tr>
<tr>
<td>b0-lsb</td>
<td>b1</td>
<td>b2</td>
<td>b3</td>
<td>b4</td>
<td>b5</td>
<td>b6</td>
<td>b7</td>
</tr>
<tr>
<td>Short Component</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b6</td>
<td>b7</td>
<td>b8</td>
<td>b9</td>
<td>b10</td>
<td>b11</td>
<td>b12</td>
<td>b13-msb</td>
</tr>
<tr>
<td>PLC Index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b0-lsb</td>
<td>b1-msb</td>
<td>b0-lsb</td>
<td>b1</td>
<td>b2</td>
<td>b3</td>
<td>b4</td>
<td>b5</td>
</tr>
<tr>
<td>CRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b0-lsb</td>
<td>b1</td>
<td>b2</td>
<td>b3</td>
<td>b4</td>
<td>b5</td>
<td>b6</td>
<td>b7-msb</td>
</tr>
<tr>
<td>Zero Filler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Data Frame 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Char 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b8</td>
<td>b7</td>
<td>b6</td>
<td>b5</td>
<td>b4</td>
<td>b3</td>
<td>b2</td>
<td>b1</td>
</tr>
<tr>
<td>Char 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b8</td>
<td>b7</td>
<td>b6</td>
<td>b5</td>
<td>b4</td>
<td>b3</td>
<td>b2</td>
<td>b1</td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b8-msb</td>
<td>b7</td>
<td>b6</td>
<td>b5-lsb</td>
<td>b4-msb</td>
<td>b3</td>
<td>b2</td>
<td>b1-lsb</td>
</tr>
<tr>
<td>Count Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b8-msb</td>
<td>b7</td>
<td>b6</td>
<td>b5-lsb</td>
<td>b4-msb</td>
<td>b3</td>
<td>b2</td>
<td>b1-lsb</td>
</tr>
</tbody>
</table>

Data Frame 14							
Char 1							
b8	b7	b6	b5	b4	b3	b2	b1
Char 10							
b8	b7	b6	b5	b4	b3	b2	b1
Count							
b8-msb	b7	b6	b5-lsb	b4-msb	b3	b2	b1-lsb
If the DTE lowers Request to Send (RTS) while the Secure BET Asynchronous Data application is active, the terminal shall complete transmission of the current superframe, filling data frame octets with 0x00 as required. If RTS remains low at the end of the superframe, the terminal shall cease transmitting. When RTS is again activated, asynchronous data transmission shall begin with a Sync Management frame followed by asynchronous data frames.
4.0 SCIP ELECTRONIC REKEY SIGNALING

This section specifies the signaling required to electronically rekey the FIREFLY or ECMQV key material in SCIP terminals. In addition to providing new key material, the rekey data authenticates the SCIP terminal, and is customized to furnish organizational identification information. Compromised Key List (CKL) management is also provided as part of the Electronic Rekey function. The design approach for Electronic Rekey utilizes the Generic Rekey Front End (GRFE) to interface to the Key Processing Facility (KPF). The telephone network interface for the GRFE is provided by the SCIP Line Interface Terminal (SCIP-LIT), which establishes a secure call with the calling SCIP terminal and provides encryption for the Rekey Application Protocol Data Units (APDUs). Electronic Rekey is an independent Operational Mode in the SCIP terminal that is negotiated automatically on calls to the SCIP-LIT.

Editor's Note: The electronic rekey facility for ECMQV key material may be different than the one described herein for FIREFLY key material.

Section 4.1 describes the SCIP Electronic Rekey protocol architecture and communication paths. Section 4.2 specifies the SCIP Message Transport layer. This is followed by an overview of the Adaptation layer and Generic Rekey Application layer in Sections 4.3 and 4.4, respectively. Detailed Electronic Rekey processing requirements are specified in SCIP-230, Section 6, or SCIP-232, Appendix E.

Editor's Note: The user interface for initiating rekey is left to the implementer. Options include a "Rekey" button on the terminal, programming an available speed-dialing button to dial the rekey telephone number, and simply manually dialing the rekey number. When the SCIP-LIT answers the call, it will initiate secure call setup automatically.
4.1 Electronic Rekey Protocol Architecture and Communication Paths

The protocol layer descriptions in this section identify the subset of the OSI seven-layer model that is used in the SCIP terminal to perform Electronic Rekey through the GRFE. The GRFE provides protocol conversion and performs limited authentication between the SCIP terminals and the KPF. Figure 4.1-1 illustrates the rekey protocol stacks for each device in the SCIP Electronic Rekey communication path. As shown, the terminal must implement the Generic Rekey Protocol (GRP) at the application layer, an Adaptation layer function that reassembles GRPDUs into APDUs, and the SCIP Message Transport protocol specified in Section 2.1.

Figure 4.1-1 Rekey Protocol Conversion Using the GRFE

Figure 4.1-2 illustrates the communication devices and paths employed by the rekey system infrastructure. The GRFE has serial interfaces that connect to the SCIP-LIT and the STE-LIT. The GRFE communicates with the Central Facility (CF) KPFs over an Ethernet interface and interfaces to the CF’s Digital PBX via the LITs. Analog cards are installed at the PBX for connections to the SCIP-LITs and the STU-III LITs. (The STU-III rekey path is shown for completeness only.)
NOTES:
1. There are generally more than one of each type of LIT; however, only one is shown here to illustrate the architecture.

Figure 4.1-2 Electronic Rekey System Infrastructure
4.2 SCIP Electronic Rekey Message Transport

The SCIP Electronic Rekey application uses the SCIP message transport mechanisms specified in Section 2.1 to assure that all rekey data sent from the GRFE arrives at the receiving terminal error-free under most channel conditions and in exactly the same order it was originally sent. Following initial SCIP call setup signaling, where the SCIP Electronic Rekey application (the only SCIP application supported by the SCIP-LIT) is negotiated, the transport layer protocol remains in place and transports SCIP Rekey Messages. SCIP Rekey Messages carry the variable-length Rekey APDUs as their payloads.

Figure 4.2-1 illustrates how the Rekey APDUs, specified in SCIP-230, Section 6.2, or SCIP-232, Appendix E.2, are encapsulated in SCIP Rekey Messages.

Note that a Rekey APDU may be transmitted either in a single Rekey Message or in multiple Rekey Messages. The SCIP-LIT typically transmits a Rekey Response APDU in multiple Rekey Messages.

Figure 4.2-1 SCIP Rekey Message Preparation
4.2.1 Encryption and Transmission Ordering

The Rekey APDU octets are formatted into 14-octet blocks prior to encryption. If there are fewer than 14 octets remaining in the final block of an APDU, zero padding may be used to complete a 14-octet block. Rekey octets are encrypted in the order they appear in the Rekey APDUs beginning with the high order Adaptation layer octet (see SCIP-230, Section 6.2.1, or SCIP-232, Appendix E.2.1). Detailed requirements for Rekey APDU encryption are specified in SCIP-230, Sections 6.2.1 and 6.2.2, or SCIP-232, Appendices E.2.1 and E.2.2.

After the Rekey APDU octets have been encrypted, they shall be formatted into the Encrypted Rekey APDU field of the SCIP Rekey Message as shown in Table 4.2-1. Encrypted padding octets (if present) shall be discarded. The SCIP Rekey Message shall then be passed to the Transport layer for transmission.

Table 4.2-1 SCIP Rekey Message Format

<table>
<thead>
<tr>
<th>Octets (msb)</th>
<th>Octets (lsb)</th>
<th>Bits</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>0-msb</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Source ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Message Length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-msb</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Message Version</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Encrypted Rekey Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octet 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b8</td>
<td>b7</td>
<td>b6</td>
<td>b5</td>
</tr>
<tr>
<td>Octet n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b8</td>
<td>b7</td>
<td>b6</td>
<td>b5</td>
</tr>
</tbody>
</table>

n = number of Encrypted Rekey Data octets.

- For the SCIP Rekey Message the value of the MID is 0x00E0.
- The Message Length shall contain the actual length of the message body (including the length of the Message Length field itself but not including the length of the MID field) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 3 and the low order bit being bit 1 of octet 4.
For the version of the SCIP Rekey Message defined in this version of the Signaling Plan, the value of the Message Version field is 0x00.

- The Encrypted Rekey Data field contains a variable number of octets that correspond to an encrypted Rekey APDU or partial APDU. The msb of the high order Adaptation layer octet of the encrypted APDU (as defined in SCIP-230, Section 6.2.1, or SCIP-232, Appendix E.2.1) shall be placed in bit 8 of octet 1 of the first Rekey Message.

4.2.2 SCIP Rekey Message Transmission

SCIP Rekey Messages are constructed at the SCIP-LIT or the destination terminal, depending on the direction the message will travel. The SCIP-LIT or the destination terminal shall then use the processes described in Section 2.1, including SOM/EOM framing, frame counters, CRC, FEC, and ACK/NAK using REPORT Messages, to transmit the SCIP Rekey Message to the destination terminal or to the SCIP-LIT. The message shall be transmitted in ascending octet order.

4.2.3 SCIP Rekey Message Reception

Following the transition from call setup signaling to SCIP Rekey, the receiving terminal’s Transport layer shall continue to monitor the communications channel searching for incoming SOM patterns and the associated transport frames as described in Section 2.1.6. Payload data from the transport frames shall be transferred to the message layer, where SCIP Rekey Messages shall be verified and interpreted.

Information extracted from the Encrypted Rekey Data field of each received SCIP Rekey Message shall be decrypted in the order shown in Figure 4.2-2 and passed to the Adaptation layer described in Section 4.3.

The terminal shall wait at least 10 seconds after call setup is complete before transmitting a Rekey Request Message (Grkrq) to the SCIP-LIT. This is required to accommodate the SCIP-LIT processing delay.
4.3 Adaptation Layer

The Adaptation layer, which resides between the Generic Rekey Application layer and the SCIP Reliable Transport layer, is used to convey application PDU length information and to reassemble application PDUs from the received Rekey data. On the transmit side, a two-octet length field is appended to the front of each Generic Rekey PDU (GRPDU) indicating the number of octets in the PDU (not including the appended length field). If Rekey Option 0x0006 (with 32-bit CRC) was negotiated, the CRC check bits are also computed and appended to the end of the GRPDU. The resulting Rekey APDU, comprised of the GRPDU and the appended length field (and CRC, if this option was negotiated), is encrypted and then transmitted using the SCIP Reliable Transport. On the receive side, the decrypted Rekey APDU is passed to the Adaptation layer, which extracts and examines the two-octet length field to determine the number of octets in the application PDU to be reconstructed (and verifies the CRC, if this option was negotiated).

If Rekey Option 0x0006 (with 32-bit CRC) was negotiated and the CRC verification fails at the SCIP-LIT, the SCIP-LIT shall terminate the call by transmitting a Notification Message with the Action set to Connection Terminate and the Information Code set to `Rekey Message CRC failure`. If the CRC verification fails at the terminal being rekeyed, the terminal shall proceed with one of the options specified in SCIP-230, Section 6.2.1, or SCIP-232, Appendix E.2.1.

Further details of the Adaptation layer are specified in SCIP-230, Section 6.2.1, or SCIP-232, Appendix E.2.1.
4.4 Generic Rekey Application Layer

For SCIP Electronic Rekey, the terminal shall implement the Generic Rekey Protocol at the Application layer. The Generic Rekey Protocol (GRP) is used for the transmission of rekey requests and acknowledgments (by the terminal), and for the transmission of rekey/CKL data and associated error indications (by the GRFE). Table 4.4-1 lists the currently specified GRP messages or protocol data units (GRPDUs).

Table 4.4-1 Generic Rekey Protocol Data Units (GRPDUs)

<table>
<thead>
<tr>
<th>GRPDU</th>
<th>PDU Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grkrq</td>
<td>Terminal request for a rekey or seed conversion from the KPF/GRFE.</td>
</tr>
<tr>
<td>Grkrs</td>
<td>KPF/GRFE response to terminal's rekey request with current and/or next keys encrypted separately.</td>
</tr>
<tr>
<td>Gerror</td>
<td>KPF/GRFE response indicating an error and/or to keep the communication link open.</td>
</tr>
<tr>
<td>Grkcmp</td>
<td>Terminal’s acknowledgment of a completed rekey update with a success/failure indication.</td>
</tr>
</tbody>
</table>

All GRPDUs are encoded using the transfer syntax Distinguished Encoding Rules (DERs), processed using the Adaptation function, and transmitted according to the procedures specified in Section 4.2. The format and use of each PDU, including syntax elements, component lengths (where applicable) and format and value restrictions, are specified in SCIP-230, Section 6.2.3, or SCIP-232, Appendix E.2.3. ASN.1 encoding definitions of the GRPDUs are provided in SCIP-230, Appendices A.2 and B.2, or SCIP-232, Appendices E.3 and E.4.
5.0 SCIP SIGNALING – Multipoint Operation

This section defines the SCIP signaling for multipoint operation, which is a one-to-many mode with one transmitter and multiple receivers. The transmitter and receivers use PPKs for encryption and decryption of secure application traffic. The specific encryption key, encryption algorithm, and secure application option to be used during multipoint operation is determined prior to the start of SCIP multipoint signaling. The transmitter and receivers need this information to establish secure multipoint communication. Note that octet alignment is not implied or required by this specification, and should not be expected by the receiving terminals. Section 5.1 specifies SCIP message framing and transport, including the Multipoint Cryptosync (MCS) Message, which is used to initiate SCIP secure application traffic. Section 5.2 specifies a multipoint session, including multipoint transmission and reception.

5.1 Multipoint Message Transport

For multipoint operation, information is transmitted (broadcast) one-way, without the ability to acknowledge the reception. An example transport signaling timeline for transmitting multipoint framed and full bandwidth traffic is shown in Figure 5.1-1. “Framed” traffic, as defined in Section 2.1.3, applies to SCIP multipoint signaling traffic, and multipoint “full bandwidth” traffic applies to encrypted application traffic that is transmitted with sync management information included, as specified in Section 5.2.1.2. Following SCIP multipoint signaling traffic, a transition occurs from multipoint “framed” traffic to “full bandwidth” traffic.

\[
\begin{array}{cccccc}
\text{IDLE} & \text{FRAMED TRAFFIC} & \text{FILLER} & \text{START} & \text{FULL BANDWIDTH TRAFFIC} & \text{EOT}
\end{array}
\]

NOTES
EOT = End of Transmission

Figure 5.1-1 Multipoint Transport Signaling Timeline

5.1.1 Multipoint Transport Framing

Transport framing used for point-to-point operation, as specified in Section 2.1.3, is also used for multipoint operation with the following exceptions. The Frame Count (FC) is used by the receiving terminals to identify the corresponding frames in multiple transmissions of the MCS Message. The receiving terminals cannot request frame retransmissions as is done in point-to-point operation with the REPORT message.

The transmission frame group used for point-to-point and multipoint operation contains an SOM (see Section 2.1.3.1), one or more frames, and an EOM (see Section 2.1.3.5). Each frame contains an FC (see Section 2.1.3.2), Message Data (see Table 2.1-1), CRC (see Section 2.1.3.3),
The Frame Count shall be set to 0x01 at the start of each MCS Message transmission and incremented, by one, for each subsequent message frame transmitted. Frame Count = 0x00 is reserved for Transport Layer control messages. There are no Transport Layer control messages in multipoint operation.

5.1.1 Multipoint Message Transmission

Messages shall be transmitted in frame groups. Within a frame group, an SOM is transmitted first. Then message frames are transmitted followed by an EOM. If the same message is transmitted multiple times, the frames in each message repetition will have the same Frame Count values as the original transmission.

Multiple copies of the MCS Message may be transmitted, as shown in Figure 5.1-2, to increase the likelihood that the receivers will either receive or assemble one copy of the message with no uncorrectable errors.

![Figure 5.1-2 Multiple Multipoint Cryptosync Message Transmissions](image)

NOTES

SOM = Start of Message
MCS = Multipoint Cryptosync Message
EOM = End of Message

5.1.2 Multipoint Message Reception

When an SOM is received, the receiver shall parse a 20-octet frame from the incoming data stream. The receiver may perform an FEC decode and shall use the CRC to verify that the frame was received correctly. Note that FEC decoding may have corrected transmission errors.

If the CRC passes, the frame shall be marked as received correctly.

If the CRC does not pass, the frame shall be marked as received incorrectly. The receiver shall repeat the above processing for each subsequent 20-octet frame until either an EOM or an SOM is detected.

Editor's Note: Note that the implementer may choose to consider a frame as being received incorrectly if FEC decoding is not successful. In this case, checking the CRC is not required.
If an EOM is received, the receiver waits for the next SOM or the START. If an SOM is received, the receiver immediately starts processing the frames that follow the SOM.

Editor's Note: If a receiver is able to recognize and process frames in a frame group even when an SOM is not detected (e.g., by working backward from an EOM that is detected), this is permitted though it is not required.

5.1.2 Multipoint Cryptosync Message

SCIP multipoint signaling begins with the transmission of the MCS Message to provide synchronization to the receiving terminals and initiate multipoint secure application traffic. The Application IV for the multipoint secure application is transmitted in the MCS Message. The transmitter also generates the Sync Verification pattern that allows the receiving terminals to verify that encryption and decryption are operating properly, and transmits it in the MCS Message.

5.1.2.1 Multipoint Cryptosync Message Definition

The format of the Multipoint Cryptosync Message is shown in Table 5.1-1.

<table>
<thead>
<tr>
<th>Table 5.1-1 Multipoint Cryptosync Message – General Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 (msb)</td>
</tr>
<tr>
<td>MID</td>
</tr>
<tr>
<td>0-msb</td>
</tr>
<tr>
<td>Source ID</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>Message Length</td>
</tr>
<tr>
<td>X-msb</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>Message Version</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>Application IV Length</td>
</tr>
<tr>
<td>X-msb</td>
</tr>
<tr>
<td>X</td>
</tr>
</tbody>
</table>
Table 5.1-1 Multipoint Cryptosync Message – General Format (Cont.)

<table>
<thead>
<tr>
<th>Octets</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 (msb)</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>7+N</td>
</tr>
<tr>
<td>6</td>
<td>8+N</td>
</tr>
<tr>
<td>5</td>
<td>9+N</td>
</tr>
<tr>
<td>4</td>
<td>9+N+L</td>
</tr>
<tr>
<td>3</td>
<td>10+N</td>
</tr>
<tr>
<td>2</td>
<td>11+N</td>
</tr>
<tr>
<td>1 (lsb)</td>
<td>10+N+L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Octets</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>10+N+M1</td>
<td>8+N+2L+MT-ML</td>
</tr>
<tr>
<td>9+N+2L+MT-ML</td>
<td>9+N+2L+MT-ML</td>
</tr>
<tr>
<td>9+N+2L+MT-ML</td>
<td>8+N+2L+MT-ML</td>
</tr>
<tr>
<td>8+N+2L+MT-ML</td>
<td>7+N+2L+MT-ML</td>
</tr>
</tbody>
</table>

N = Length of Application IV. M1 = Length of First Sync Parameter. L = Number of Sync Parameter Entries. M_L = Length of L’th Sync Parameter. MT = Total Length of Sync Parameters (i.e., M1 + M2 + ... + M_L).
For the Multipoint Cryptosync Message, the value of the MID shall be 0x0009.

The Message Length shall contain the actual length of the MCS Message (including the length of the Message Length field itself but not including the length of the MID field) in octets. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 3 and the low order bit being bit 1 of octet 4.

For the version of the MCS Message defined in this version of the Signaling Plan, the value of the Message Version field is 0x00.

The Application IV Length shall contain the length of the Application IV field in octets (plus the length of the Application IV Length field itself). The value of the field shall be an unsigned binary integer with the high order bit being bit 8 of octet 6 and the low order bit being bit 1 of octet 7.

The Application IV shall contain the IV to be used with the application that has been selected. Details of the length, format, and content are found in SCIP-232, Section 3.6.1.2 (SCIP-230 and SCIP-231 Sections TBD). The msb of the IV (as defined in SCIP-23x) is placed in bit 8 of octet 8.

The Sync Parameters Length shall contain the total length of the Sync Parameters in octets (plus the length of the Sync Parameters Length field itself). The value of the field shall be an unsigned binary integer with the high order bit being bit 8 and the low order bit being bit 1.

The Sync Parameter ID fields shall contain the IDs of the Sync Parameters listed in Table 5.1-2. Sync Parameter IDs are unique to each Sync Parameter. The value of the field shall be an unsigned binary integer with the high order bit being bit 8 and the low order bit being bit 1.

The Sync Parameter Lengths shall contain the lengths of the Sync Parameter fields in octets (plus the length of the Sync Parameter Length field itself). The value of the field shall be an unsigned binary integer with the high order bit being bit 8 and the low order bit being bit 1.

The Sync Parameter fields shall contain the Sync Parameters identified by the Sync Parameter IDs listed in Table 5.1-2, and specified in Section 5.1.2.2.

5.1.2.2 Multipoint Sync Parameters

This section specifies the Sync Parameters for multipoint operation. The First Sync Parameter in the MCS Message is mandatory, and shall be the Sync Verification pattern. All other Sync Parameters are optional, and may be listed in any order. Currently defined Sync Parameters are listed in Table 5.1-2.

<table>
<thead>
<tr>
<th>Sync Parameter ID</th>
<th>Sync Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x01</td>
<td>Sync Verification pattern</td>
</tr>
</tbody>
</table>
5.1.2.2.1 Sync Verification Pattern

The Sync Verification pattern is generated, as specified in SCIP-232, Section 3.6.2.2 (SCIP-230 and SCIP-231 Sections TBD), to verify proper operation of the cryptography. Its Sync Parameter ID shall be set to 0x01.

5.1.3 FILLER – Multipoint Operation

For multipoint operation, the transmitter inserts FILLER, which is the same pattern used for point-to-point operation, between the end of the MCS Message and the beginning of the START. The FILLER pattern is a 64-bit pseudorandom sequence that is repeated an integer number of times; however, there is no minimum duration of FILLER for multipoint operation. The purpose of FILLER is to allow the receivers sufficient time to process the MCS Message. The value of the FILLER pattern is specified in Table 2.5-3.

5.1.4 START – Multipoint Operation

For multipoint operation, the transmitter uses START, which is the same pattern used in point-to-point operation, to allow the receiving terminals to detect the beginning of multipoint full bandwidth traffic. The START pattern is a 64-bit pseudorandom sequence that allows acceptable detection performance in the anticipated error environments. The value of the START pattern is specified in Table 2.5-3.

5.1.5 End of Transmission – Multipoint Operation

For multipoint operation, the transmitter uses the End of Transmission (EOT) sequence, which is the same pattern as the ESCAPE, to allow the receiving terminals to detect the end of multipoint traffic transmission. The EOT sequence is a 256-bit pseudorandom sequence that allows reliable detection in the background of full bandwidth traffic under expected channel conditions. The value of the EOT sequence is specified in Table 2.5-3.
5.2 Multipoint Session

A multipoint session begins when a SCIP terminal initiates multipoint transmit signaling and ends when an EOT sequence has been transmitted. During a multipoint session, a transmitting terminal transitions from the Multipoint IDLE state to the Multipoint Transmit Secure Traffic state via Multipoint Transmit Signaling, as shown in Figure 5.2-1. Receiving terminals transition from the Multipoint IDLE state to the Multipoint Receive Secure Traffic state via Multipoint Receive Signaling or Late Entry. At the end of the session, all terminals transition back to the Multipoint IDLE state. Section 5.2.1 specifies the multipoint transmit signaling and secure traffic. Section 5.2.2 specifies the reception and processing of multipoint receive signaling and secure traffic.

![SCIP Multipoint State Diagram](image)

NOTES
- **SM** = Sync Management frame
- **SOM** = Start of Message
- **MCS** = Multipoint Cryptosync Message
- **EOT** = End of Transmission
- **MULTIPOINT IDLE** = The state the terminal is in when it is not transmitting and not receiving SCIP multipoint traffic. The terminal is waiting for a multipoint transmit request and is also searching for SOMs and SM frames from far-end terminals.
- **RETURN TO IDLE (From Traffic)** = (1) EOT transmitted/received, or (2) Out-of-sync detected, or (3) SOM received, or (4) Timeout waiting for additional traffic
- **RETURN TO IDLE (From Signaling)** = (1) Sync Verification failed, or (2) Error-free MCS cannot be assembled, or (3) SM frame received

Figure 5.2-1 SCIP Multipoint State Diagram
5.2.1 Multipoint Transmission

This section specifies SCIP multipoint transmission. It is assumed that a point-to-multipoint digital channel has already been established, using the underlying channel protocols, by means outside the scope of this Signaling Plan. The signaling necessary to establish a SCIP multipoint secure application is then executed over this digital channel. The SCIP terminal transmits the signaling specified in this section to the receiving SCIP terminals to establish the multipoint session.

An example of the overall flow for SCIP multipoint transmit signaling is shown in Figure 5.2-2. During Multipoint IDLE periods, there is no transmission by the SCIP application, though there may actually be transmissions on individual links related to signaling performed by the underlying digital channel protocols. Multipoint IDLE periods are permitted at any time. SCIP multipoint transmit signaling shall begin with the transmission of the MCS Message, as specified in Section 5.2.1.1. If FILLER is transmitted, the pattern shall be sent an integer number of repetitions and follow the MCS Message transmission. START shall follow FILLER, if FILLER is transmitted. Otherwise, START shall follow the MCS Message transmission. Transmission of the START shall precede multipoint full bandwidth TRAFFIC. The transmission of multipoint secure traffic is specified in Section 5.2.1.2. The EOT sequence shall follow multipoint full bandwidth TRAFFIC. The end of multipoint secure traffic transmission is specified in Section 5.2.1.3. The MCS Message format and FILLER, START, and EOT patterns are specified in Section 5.1.

Figure 5.2-2 Multipoint Secure Voice Transmit Signaling Time Line

<table>
<thead>
<tr>
<th>IDLE</th>
<th>SOM</th>
<th>MCS</th>
<th>EOM</th>
<th>FILLER</th>
<th>START</th>
<th>TRAFFIC</th>
<th>EOT</th>
<th>IDLE</th>
</tr>
</thead>
</table>

SCIP device searches for SOMs and SMs.

NOTES
- SM = Sync Management frame
- SOM = Start of Message
- MCS = Multipoint Cryptosync Message
- EOM = End of Message
- EOT = End of Transmission
- N = Integer number of FILLER pattern repetitions transmitted
- ** = Multiple transmissions of the MCS Message are allowed

The EOT sequence indicates the end of multipoint traffic transmission.
5.2.1.1 Multipoint Cryptosync Message Transmission

MCS Message transmission for SCIP multipoint signaling is shown in Figure 5.2-3. This signaling occurs at the beginning of a SCIP multipoint transmission, and starts from the Multipoint IDLE state (see Figure 5.2-1). Upon receipt of a locally generated Multipoint Transmit Request, the PPK attributes shall be displayed to the user, as defined in SCIP-232, Section 2.2.1 (SCIP-230 and SCIP-231 Sections TBD).

The terminal shall generate an Application IV and a Sync Verification pattern as defined in SCIP-232, Section 3.5.3.1 (SCIP-230 and SCIP-231 Sections TBD). If optional Sync Parameters are to be included in the MCS Message, the terminal shall format the optional Sync Parameters in addition to the mandatory Sync Verification pattern.

The terminal shall transmit the MCS Message, as specified in Sections 5.1.1.1 and 5.1.2, to the receiving terminals followed by optional FILLER. The terminal shall then transmit START and transition to the Multipoint Transmit Secure Traffic state specified in Section 5.2.1.2.
Figure 5.2-3 Multipoint Cryptosync Message Transmission
5.2.1.2 Multipoint Secure Traffic Transmission

Multipoint secure traffic transmission processing, using the Application IV included in the MCS Message, shall begin after the terminal transitions to the Multipoint Transmit Secure Traffic state (see Figure 5.2-1). The Secure MELP Voice application is specified in Section 5.2.1.2.1 for multipoint secure traffic transmission. The Secure G.729D Voice (see Section 5.2.1.2.2) and Secure Data (see Section 5.2.1.2.3) applications are TBSL.

5.2.1.2.1 Multipoint Secure MELP Voice Transmission

Secure 2400 bps Blank and Burst MELP Voice with FCT is used for multipoint operation. A Sync Management frame is substituted periodically for a vocoder frame. The vocoder frame that would normally have been transmitted during the Sync Management frame transmission interval is discarded. The Sync Management frame contains information that allows late-entry cryptographic synchronization as well as cryptographic synchronization maintenance. The MELP vocoder is run continuously, and all frames that are generated (excluding blanked frames) are transmitted. DTX operation (see Section 3.3.1.4) is not supported for multipoint operation.

Secure 2400 bps Blank and Burst MELP Voice shall be transmitted in a "superframe" consisting of a 54-bit Sync Management frame followed by 23 54-bit MELP vocoder frames, except when shortened by the transmission of an EOT to end multipoint traffic transmission. The contents of the 54-bit MELP vocoder frame, representing 22.5 m sec. of speech, shall be as specified in MIL-STD-3005 or NATO STANAG 4591. The MELP encryption and transmission bit ordering shall be the same as for point-to-point operation. The alternating 1/0 sync bit in the first MELP vocoder frame transmitted may have either value, and the receiver must be prepared to accept either value.

An example of multipoint Secure 2400 bps Blank and Burst MELP Voice transmission is shown in Figure 5.2-4. Secure traffic shall begin with a START and end with an EOT. MELP and Sync Management frames shall be transmitted between the START and EOT. Note that the superframe always begins with a Sync Management frame. Note also that the first vocoder frame shall be discarded (blanked) and replaced by a Sync Management frame. In all cases, however, the first MELP frame actually transmitted in a superframe is encrypted using the second half of the first state vector value for that superframe.
The Sync Management frame specified in Section 3.3.1.1.1 and encryption and transmission ordering specified in Section 3.3.1.1.2 for Secure 2400 bps Blank and Burst MELP Voice shall apply to multipoint operation.

5.2.1.2.2 Multipoint Secure G.729D Voice Transmission

The transmit format of Multipoint Secure G.729D Voice is TBSL.

5.2.1.2.3 Multipoint Secure Data Transmission

The transmit format of Multipoint Secure Data is TBSL.
5.2.1.3 End of Multipoint Secure Traffic Transmission

The end of a SCIP multipoint secure traffic transmission is shown in Figure 5.2-5. Upon receipt of a locally generated request to stop multipoint transmission, the terminal shall cease transmitting SCIP multipoint secure traffic, transmit an EOT sequence to end the multipoint session, and transition to the Multipoint IDLE state (see Figure 5.2-1). Upon transition to the Multipoint IDLE state, the terminal shall remove the PPK attributes from the display.

NOTE:
1. Remove the PPK attributes from the display.

Figure 5.2-5 End of Multipoint Secure Traffic Transmission
5.2.2 Multipoint Reception

If the entire MCS Message is received correctly, receiving terminals shall verify proper operation of the cryptography and wait for the START. The reception and processing of the MCS Message are specified in Section 5.2.2.1. The reception and processing of multipoint secure full bandwidth traffic are specified in Section 5.2.2.2.

If the entire MCS Message is not received or not received correctly, then cryptographic synchronization may be achieved through Late Entry as specified in Section 5.2.2.3.

The end of multipoint secure traffic reception is specified in Section 5.2.2.4.

5.2.2.1 Multipoint Cryptosync Message Reception

MCS Message reception during SCIP multipoint signaling is shown in Figure 5.2-6. This signaling occurs at the beginning of a SCIP multipoint reception, and starts from the Multipoint IDLE state (see Figure 5.2-1). The receiving terminals shall process a received MCS Message, as specified in Sections 5.1.1.2 and 5.1.2. Receiving terminals may use the Frame Count to identify the frames that were received correctly, the frames that were received with errors, and the frames that were received multiple times. This information allows the receiving terminals to determine if one error-free copy of the MCS Message has been received or can be assembled.

When an error-free MCS Message is received or assembled, the receiving terminals shall verify the Sync Verification pattern contained in the MCS Message, as specified in SCIP-232, Section 3.5.3.2 (SCIP-230 and SCIP-231 Sections TBD). When the Sync Verification pattern has been verified, the PPK attributes shall be displayed to the user, as specified in SCIP-232, Section 2.2.1 (SCIP-230 and SCIP-231 Sections TBD). The receiving terminals shall then process any optional Sync Parameters that are contained in the MCS Message. If a Sync Parameter ID is not supported, the receiving terminals shall ignore the Sync Parameter and process any remaining Sync Parameter IDs. Upon receipt of the START, the receiving terminals shall transition to the Multipoint Receive Secure Traffic state specified in Section 5.2.2.2.

When an error-free MCS Message cannot be assembled, Sync Verification fails, or a Sync Management frame is received, the receiving terminals shall transition to the Multipoint IDLE state and execute Late Entry (see Figure 5.2-1). The Sync Management frames inserted in the traffic shall be used to achieve Late Entry cryptographic synchronization, as specified in Section 5.2.2.3.
NOTES:
1. SOM marks the beginning of the MCS Message that may be received multiple times.
2. Frame Count is used to identify frames that are error-free. The receivers of multiple MCS messages assemble error-free MCS frames as they are received.
3. Verification of the Sync Verification pattern is defined in SCIP-23x.
4. Display the PPK attributes after the Sync Verification pattern is verified.
5. If a receiving terminal does not recognize a Sync Parameter ID, it ignores it and processes any remaining Sync Parameter ID(s).
6. The START was not detected.
7. Late Entry will be executed.

Figure 5.2-6 Multipoint Cryptosync Message Reception
5.2.2.2 Multipoint Secure Traffic Reception

Multipoint secure traffic reception processing shall begin after the terminal transitions to the Multipoint Receive Secure Traffic state (see Figure 5.2-1). The Application IV included in the MCS Message (see Section 5.2.2.1) or assembled from the components in the Sync Management frames (see Section 5.2.2.3) shall be used for decryption. The Secure MELP Voice application is specified in Section 5.2.2.2.1 for multipoint secure traffic reception. The Secure G.729D Voice (see Section 5.2.2.2.2) and Secure Data (see Section 5.2.2.2.3) applications are TBSL.

Multipoint secure voice traffic reception processing is shown in Figure 5.2-7. Receiving terminals shall process multipoint secure traffic frames when they are received. If a received frame is a Sync Management frame, the receiving terminals shall validate synchronization using the Partial Long and Short components contained within the Sync Management frame, as specified in SCIP-23x for each application. This process is used to maintain cryptographic synchronization.

Figure 5.2-7 Multipoint Secure Voice Traffic Reception
5.2.2.2.1 Multipoint Secure MELP Voice Reception

Upon receipt of a START (see Section 5.2.2.1), or upon assembling the Long and Short Components from the Sync Management frames during Late Entry (see Section 5.2.2.3), receiving terminals shall begin decrypting multipoint full bandwidth traffic. The superframe structure for multipoint secure MELP voice traffic is shown in Figure 5.2-4. Superframe alignment must be established in order to decrypt the secure MELP voice frames. The Sync Management frame specified in Section 3.3.1.1.1 and decryption and reception ordering specified in Section 3.3.1.1.2 for Secure 2400 bps Blank and Burst MELP Voice shall apply to multipoint operation.

5.2.2.2.2 Multipoint Secure G.729D Voice Reception

TBSL

5.2.2.2.3 Multipoint Secure Data Reception

TBSL

5.2.2.3 Late Entry (Including Re-Entry)

Late Entry cryptographic synchronization during SCIP multipoint signaling is shown in Figure 5.2-8. This signaling occurs when receiving terminals start receiving secure multipoint full bandwidth traffic without first receiving and successfully processing the MCS Message. This signaling starts from the Multipoint IDLE state (see Figure 5.2-1). The receiving terminals shall search for the Sync Management frames inserted in multipoint full bandwidth traffic. When the first Sync Management frame has been received, the PPK attributes shall be displayed to the user, as defined in SCIP-232, Section 2.2.1 (SCIP-230 and SCIP-231 Sections TBD). In order to achieve cryptographic synchronization, the Partial Long Components and Short Component contained within the Sync Management frames shall be assembled as specified in SCIP-232, Section 4.1.1.2 (SCIP-230 and SCIP-231 Sections TBD). The receiving terminals shall then transition to the Multipoint Receive Secure Traffic state specified in Section 5.2.2.2.

Re-entry cryptographic synchronization follows the same process as Late Entry cryptographic synchronization, with one exception. In Re-entry, the Short Component is usually sufficient to re-establish cryptographic synchronization. Re-entry is executed when synchronization, after initially being established, is lost during the session.
NOTES:
1. SM frames are inserted in the multipoint secure voice traffic.
2. Display the PPK attributes after the first SM frame is received.
3. Assembling of the components contained within the SM frames is defined in SCIP-23x.
4. Continue Late Entry execution.

Figure 5.2-8 Multipoint Late Entry Cryptographic Synchronization
5.2.4 End of Multipoint Secure Traffic Reception

The end of SCIP multipoint secure traffic reception is shown in Figure 5.2-9. Upon receipt of an EOT or SOM, detection of loss of synchronization, or a timeout waiting for additional traffic, the receiving terminals shall suspend multipoint secure traffic reception and transition to the Multipoint IDLE state (see Figure 5.2-1). An SOM, which begins a new MCS Message, may be received if an EOT was not detected. A timeout may also be implemented to guarantee a transition to the Multipoint IDLE state, if an EOT is not detected. Upon transition to the Multipoint IDLE state, the receiving terminals shall remove the PPK attributes from the display.

NOTE:
1. An EOT was not detected.
2. A timeout may be implemented to guarantee a transition to Multipoint IDLE, if an EOT is not detected.
3. Remove the PPK attributes from the display.

Figure 5.2-9 End of Multipoint Secure Traffic Reception
APPENDICES

A.0 SCIP MESSAGE TRANSPORT PROTOCOL EXAMPLES

This appendix provides several examples of the operation of the SCIP message transport control protocol. It contains no requirements. These examples are used to show messages from the Message Layer of Terminal A being sent to the Message Layer of Terminal B. Messages may be transferred in the opposite direction simultaneously; however, for clarity this is not shown. The transmit directions operate independently.

The following notation is used in the examples shown in this appendix.

3 Frame #3

* Frame #5 received with uncorrectable errors

Lost information

Application Timer running

RPT(4/5,30) REPORT message acknowledging Block #4 and requesting resend of Block #5 & Block #30
A.1 Normal Capabilities Message Transfer

1. The Message Layer at Terminal A determines that a CAPABILITIES message needs to be sent. This example assumes that the CAPABILITIES Message sent from the Message Layer at Terminal A is between 27 and 39 octets long, resulting in 3 frames at the Transport Layer.

2. The Transport Layer at Terminal A receives the CAPABILITIES message from the Message Layer, divides it into 3 frames, and begins by sending SOM.

3. Terminal A sends frame 1 & stores a local copy for possible retransmission.

4. Terminal A sends frame 2 & stores a local copy for possible retransmission. Terminal B receives SOM, indicating an incoming message.

5. Terminal A sends frame 3 & stores a local copy for possible retransmission. Terminal B receives frame 1.

6. Terminal A sends EOM since all frames of the Capabilities message have been sent. Terminal B receives frame 2.

7. Terminal B receives frame 3.

8. Terminal B receives EOM, indicating that the incoming message is complete.

9. Terminal B knows of no outstanding frames and therefore will acknowledge frames 1 through 3. A SOM is sent to frame the REPORT. Terminal B concatenates the payload data from received frames 1-3 and passes it to the Message Layer, which determines that it forms a valid Capabilities message.

10. Terminal B sends REPORT indicating that all frames up to and including frame 3 have been received correctly.

11. Terminal A receives SOM, indicating a new incoming message. Terminal B sends EOM, indicating the end of the REPORT.

12. Terminal A receives REPORT indicating that frames up to and including frame 3 have been received correctly. Terminal A may now delete its local copy of transmitted frames 1-3 since it knows that no further retransmissions of these frames will be necessary.

13. Terminal A receives EOM, indicating the end of the received REPORT.
14. If necessary, the Transport Layer at Terminal A may inform the Message Layer that the CAPABILITIES message has been successfully transported.
A.2 Parameters/Certificate Message Transfer with Corrupted and Missing Frames

<table>
<thead>
<tr>
<th>Terminal A</th>
<th>Terminal B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Layer</td>
<td>Transport Layer</td>
</tr>
<tr>
<td>TX</td>
<td>RX</td>
</tr>
<tr>
<td>1</td>
<td>Param/Cert</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>...</td>
</tr>
<tr>
<td>10</td>
<td>44</td>
</tr>
<tr>
<td>11</td>
<td>EOM</td>
</tr>
<tr>
<td>12</td>
<td>SOM</td>
</tr>
<tr>
<td>13</td>
<td>RPT(4/5,30)</td>
</tr>
<tr>
<td>14</td>
<td>EOM</td>
</tr>
<tr>
<td>15</td>
<td>SOM</td>
</tr>
<tr>
<td>16</td>
<td>RPT(4/5,30)</td>
</tr>
<tr>
<td>17</td>
<td>EOM</td>
</tr>
<tr>
<td>18</td>
<td>SOM</td>
</tr>
<tr>
<td>19</td>
<td>RPT(4/5,30)</td>
</tr>
<tr>
<td>20</td>
<td>EOM</td>
</tr>
<tr>
<td>21</td>
<td>SOM</td>
</tr>
<tr>
<td>22</td>
<td>RPT(4/5,30)</td>
</tr>
<tr>
<td>23</td>
<td>EOM</td>
</tr>
<tr>
<td>24</td>
<td>SOM</td>
</tr>
<tr>
<td>25</td>
<td>RPT(4/5,30)</td>
</tr>
<tr>
<td>26</td>
<td>EOM</td>
</tr>
<tr>
<td>27</td>
<td>SOM</td>
</tr>
<tr>
<td>28</td>
<td>RPT(4/5,30)</td>
</tr>
<tr>
<td>29</td>
<td>EOM</td>
</tr>
<tr>
<td>30</td>
<td>SOM</td>
</tr>
<tr>
<td>31</td>
<td>RPT(4/5,30)</td>
</tr>
<tr>
<td>32</td>
<td>EOM</td>
</tr>
<tr>
<td>33</td>
<td>SOM</td>
</tr>
<tr>
<td>34</td>
<td>RPT(4/5,30)</td>
</tr>
<tr>
<td>35</td>
<td>EOM</td>
</tr>
<tr>
<td>36</td>
<td>SOM</td>
</tr>
<tr>
<td>37</td>
<td>RPT(4/5,30)</td>
</tr>
<tr>
<td>38</td>
<td>EOM</td>
</tr>
<tr>
<td>39</td>
<td>SOM</td>
</tr>
<tr>
<td>40</td>
<td>RPT(4/5,30)</td>
</tr>
<tr>
<td>41</td>
<td>EOM</td>
</tr>
</tbody>
</table>

(payload 4)

(payload 5-29)

(payload 30-44)

(complete)
1. The Message Layer at Terminal A determines that a PARAMETERS/CERTIFICATE message needs to be sent. This example assumes that the PARAMETERS/CERTIFICATE Message sent from the Message Layer at Terminal A is between 521 and 533 octets long, resulting in 41 frames at the Transport Layer.

2. The Transport Layer at Terminal A receives the PARAMETERS/CERTIFICATE message from the Message Layer, divides it into 41 frames, and begins by sending SOM. This example assumes that the most recent transmitted frame was frame 3, so the first frame is assigned frame number 4.

3. Terminal A sends frame 4 & stores a local copy for possible retransmission.

4. Terminal A sends frame 5 & stores a local copy for possible retransmission. Terminal B receives SOM, indicating an incoming message.

6. Terminal A sends frames 7 through 28 & stores local copies for possible retransmission. Terminal B receives frame 5 which is corrupted (i.e. CRC failure). Terminal B may immediately send a REPORT message indicating that frame 5 needs to be retransmitted or, as is shown in this example, store up all retransmission requests until the end of the incoming message.

8. Terminal A sends frame 30 & stores a local copy for possible retransmission. Terminal B receives frames 7 through 28.

10. Terminal A sends frames 32 through 43 & stores local copies for possible retransmission. Note that in this example frame 30 is lost in transmission and does not arrive at Terminal B.

11. Terminal A sends frame 44 & stores a local copy for possible retransmission. Terminal B receives frame 31. Terminal B was expecting frame 30 and therefore adds frame 30 to the list of frames to be included on the NAK list in the REPORT message.

12. Terminal A sends EOM since all frames of the PARAMETERS/CERTIFICATE message have been sent. Terminal B receives frames 32 through 43.

13. Terminal B receives frame 44.

14. Terminal B receives EOM indicating that the incoming message is complete. Terminal B passes data from all correctly received contiguous frames to the Message Layer, in this example from frame 4 only. The Message Layer is responsible for checking length fields and realizing that this is only a partial PARAMETERS/CERTIFICATE message.

15. Terminal B sends SOM to frame the REPORT.

16. Terminal B sends REPORT indicating that up through frame 4 has been received correctly while frames 5 and 30 need to be retransmitted.

17. Terminal A receives SOM indicating the beginning of an incoming message. Terminal B sends EOM to frame the REPORT.

18. Terminal A receives REPORT indicating that up through frame 4 has been received correctly and requesting that frames 5 and 30 be retransmitted. Terminal A may now delete its local copy of transmitted frame 4 since it knows that no further retransmissions of this frame will be necessary.
19. Terminal A receives EOM indicating that the incoming REPORT is complete.
20. Terminal A sends SOM to frame the retransmitted frames.
23. Terminal A sends EOM to frame the retransmitted frames. Terminal B receives frame 5.
24. Terminal B receives frame 30, which in this example is corrupted (CRC failure).
25. Terminal B receives EOM indicating that the incoming message is complete. Terminal B passes data from all correctly received contiguous frames to the Message Layer, in this example from frames 5 through 29. The Message Layer is responsible for checking length fields and realizing that this is still only a partial PARAMETERS/CERTIFICATE message.
26. Terminal B sends SOM to frame the REPORT.
27. Terminal B sends REPORT indicating that up through frame 29 has been received correctly while frame 30 needs to be retransmitted.
28. Terminal A receives SOM indicating the beginning of an incoming message. Terminal B sends EOM to frame the REPORT.
29. Terminal A receives REPORT indicating that up through frame 29 has been received correctly and requesting that frame 30 be retransmitted. Terminal A may now delete its local copy of transmitted frames 5-29 since it knows that no further retransmissions of these frames will be necessary.
30. Terminal A receives EOM indicating that the incoming REPORT is complete.
31. Terminal A sends SOM to frame the retransmitted frames.
32. Terminal A retransmits frame 30.
33. Terminal A sends EOM to frame the retransmitted frame. Terminal B receives SOM indicating the beginning of an incoming message.
34. Terminal B receives frame 30.
35. Terminal B receives EOM indicating that the incoming message is complete. Terminal B passes data from all correctly received contiguous frames to the Message Layer, in this example from frames 30 through 44. The Message Layer is responsible for checking length fields and realizing that the PARAMETERS/CERTIFICATE message is now complete.
36. Terminal B knows of no more outstanding frames and will therefore respond to the received EOM by sending a REPORT message containing only an acknowledge frame value. Terminal B sends SOM to frame the REPORT.
37. Terminal B sends REPORT indicating that all frames up to and including frame 44 have been received correctly.
38. Terminal A receives SOM, indicating a new incoming message. Terminal B sends EOM which frames the REPORT. Terminal A receives SOM indicating an incoming message.
39. Terminal A receives REPORT indicating that frames up to and including frame 44 have been received correctly. Terminal A may now delete its local copy of transmitted frames 30-44 since it knows that no further retransmissions of these frames will be necessary.
40. Terminal A receives EOM, indicating the end of the received REPORT.
41. If necessary, the Transport Layer may inform the Message Layer that the PARAMETERS/CERTIFICATE message has been successfully transported.
A.3 F(R) Message Transfer with Corrupted SOM and EOM Sequences

<table>
<thead>
<tr>
<th></th>
<th>Terminal A</th>
<th></th>
<th></th>
<th></th>
<th>Terminal B</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Message Layer</td>
<td>Transport Layer</td>
<td></td>
<td>Message Layer</td>
<td>Transport Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX</td>
<td>RX</td>
<td>TX</td>
<td>RX</td>
<td>TX</td>
<td>RX</td>
<td>TX</td>
<td>RX</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>F(R)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SOM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>EOM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>timeout</td>
<td>SOM</td>
<td></td>
<td></td>
<td></td>
<td>SOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>EOM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>timeout</td>
<td>SOM</td>
<td></td>
<td></td>
<td></td>
<td>SOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td>47</td>
<td>payload 45-61</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>49</td>
<td>SOM</td>
<td></td>
<td>SOM</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>50</td>
<td>RPT(61/0)</td>
<td></td>
<td>RPT(61/0)</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>51</td>
<td>EOM</td>
<td></td>
<td>EOM</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>62</td>
<td>payload 62</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>EOM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>SOM</td>
<td></td>
<td></td>
<td></td>
<td>SOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>RPT(62/0)</td>
<td></td>
<td>RPT(62/0)</td>
<td></td>
<td>RPT(62/0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>EOM</td>
<td></td>
<td></td>
<td></td>
<td>EOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>RPT(62/0)</td>
<td></td>
<td></td>
<td></td>
<td>RPT(62/0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>EOM</td>
<td></td>
<td></td>
<td></td>
<td>EOM</td>
<td></td>
<td>(complete)</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Complete)
1. The Message Layer at Terminal A determines that a F(R) message needs to be sent. This example assumes that the F(R) Message sent from the Message Layer at Terminal A is between 222 and 223 octets long, resulting in 18 frames at the Transport Layer.

2. The Transport Layer at Terminal A receives the F(R) message from the Message Layer, divides it into 18 frames, and begins by sending SOM. This example assumes that the most recent transmitted frame was frame 44, so the first frame is assigned frame number 45.

3. Terminal A sends frame 45 & stores a local copy for possible retransmission.

4. Terminal A sends frame 46 & stores a local copy for possible retransmission. Terminal B should have received SOM at this time, but this example assumes that the SOM and first frames are not received.

5. Terminal A sends frames 47 through 60 & stores a local copy for possible retransmission.

6. Terminal A sends frame 61 and stores a local copy for possible retransmission.

7. Terminal A sends frame 62 and stores a local copy for possible retransmission. Terminal B receives frame 60, although it isn’t recognized because it was not preceded by SOM.

8. Terminal A sends EOM since all frames of the F(R) message have been sent. Terminal B receives frame 61, although it isn’t recognized because it was not preceded by SOM.

9. Terminal B receives frame 62, although it isn’t recognized because it was not preceded by SOM.

10. Terminal B receives EOM without having seen SOM. As a local implementation option, Terminal B can work backwards from the EOM to identify missing frames based on which frames were expected (in this example frames 45 through 59 were missing) and then send REPORT with the NAK list indicating the missing frames. Another valid approach is for Terminal B to ignore the entire received message since it was not preceded by SOM. This more simplistic approach is shown in this example.

11. The retransmission timeout at Terminal A expires because Terminal A has not received REPORT in response to the frames it transmitted. Terminal A will retransmit frames 45 through 62.

12. Terminal A begins the retransmission with SOM.

13. Terminal A retransmits frame 45.

15. Terminal A retransmits frames 47 through 60. Terminal B receives frame 45.

17. Terminal A retransmits frame 62. Terminal B receives frames 47 through 60.

18. Terminal A sends EOM since all frames have been retransmitted. Terminal B receives frame 61.

19. Terminal B stops receiving frames without having seen an EOM. As a local implementation option, Terminal B may timeout and send REPORT indicating all contiguously received frames (through frame 61 in this example). An alternative valid approach is for Terminal B to not send REPORT since EOM was not seen. This more simplistic approach is shown in this example. The retransmission timeout at Terminal A expires because Terminal A has not received REPORT in response to the frames it transmitted. Terminal A will retransmit frames 45 through 62.

20. Terminal A begins the retransmission with SOM.

21. Terminal A retransmits frame 45.
22. Terminal A retransmits frame 46. Terminal B receives SOM, indicating an incoming message. Terminal B was expecting EOM, so is required to send REPORT in response to the out-of-sequence SOM.

23. Terminal A retransmits frame 47. Terminal B sends SOM to frame the outgoing REPORT. The data from correctly received frames at Terminal B (frames 45 through 61 in this example) is passed to the Message Layer at Terminal B. Terminal B receives frame 45 but ignores it since it has already been received correctly.

24. Terminal A retransmits frame 48. Terminal B sends REPORT indicating that all frames up through 61 have been received correctly. Terminal B receives frame 46 but ignores it since it has already been received correctly.

25. Terminal A retransmits frame 49. Terminal A receives SOM, indicating an incoming message. Terminal B sends EOM. Terminal B receives frame 47 but ignores it since it has already been received correctly.

26. Terminal A retransmits frame 50 and receives REPORT indicating that Terminal B has received frames through 61 correctly. Terminal B receives frame 48 but ignores it since it has already been received correctly. Note that even though frame 48 was received with uncorrectable errors, it is not added to the NAK list since it has previously been received correctly.

27. Terminal A has received an acknowledge for frames up through 61, so it could skip up to that point in the frames it is resending. This example, however, shows the case of Terminal A continuing the sequence of frames it had started to transmit. Terminal A retransmits frame 51 and receives EOM. Terminal B receives frame 49 but ignores it since it has already been received correctly.

28. Terminal A retransmits frames 52 through 61. Terminal B receives frame 50 but ignores it since it has already been received correctly.

29. Terminal A retransmits frame 62. Terminal B receives frame 51 but ignores it since it has already been received correctly. Note that even though frame 51 was received with uncorrectable errors, it is not added to the NAK list since it has previously been received correctly.

30. Terminal A sends EOM indicating the end of the message. Terminal B receives frames 52 through 61 but ignores them since they have already been received correctly.

31. Terminal B receives frame 62.

32. Terminal B receives EOM indicating the end of the message.

33. Terminal B sends SOM to frame the outgoing REPORT. Terminal B passes to the Message Layer all contiguously received data not previously passed to the Message Layer (in this example, only information from frame 62 is passed at this point).

34. Terminal B sends REPORT indicating that frames up to and including frame 62 have been received correctly.

35. Terminal A receives SOM, indicating an incoming message. Terminal B sends EOM.

36. Terminal A receives REPORT indicating that frames through 62 have been received at Terminal B.

37. Terminal A receives EOM.

38. If necessary, the Transport Layer may inform the Message Layer that the F(R) message has been successfully transported.
A.4 CAPABILITIES Message Transfer with Corrupted REPORT Responses

1. The Message Layer at Terminal A determines that a CAPABILITIES message needs to be sent. This example assumes that the CAPABILITYITES Message sent from the Message Layer at Terminal A is between 27 and 39 octets long, resulting in 3 frames at the Transport Layer.

2. The Transport Layer at Terminal A receives the CAPABILITIES message from the Message Layer, divides it into 3 frames, and begins by sending SOM.

3. Terminal A sends frame 1 & stores a local copy for possible retransmission.
4. Terminal A sends frame 2 & stores a local copy for possible retransmission. Terminal B receives SOM indicating the beginning of an incoming message.

5. Terminal A sends frame 3 & stores a local copy for possible retransmission. Terminal B receives frame 1.

6. The Transport Layer at Terminal A has sent the entire message it received from the Message Layer so it sends EOM. Terminal B receives frame 2, which is corrupt (CRC failure).

7. Terminal B receives frame 3.

8. Terminal B receives EOM. Terminal B knows that there is a missing frame in the received sequence so it will add the missing frame number to the NAK list in the REPORT message.

9. Terminal B sends SOM in preparation for sending REPORT. Terminal B also passes along to the Message Layer the data from all contiguously received frames (only frame 1 in this example).

10. Terminal B sends REPORT indicating that up through frame 1 has been received correctly and requesting that that frame 2 be retransmitted.

11. Terminal B sends EOM. Terminal A should begin receiving the SOM at this point, but this example assumes that the entire REPORT message, including the SOM and EOM framing, is lost.

12. The retransmission timeout at Terminal A expires, indicating that Terminal A has not received REPORT. Terminal A must retransmit the entire message.

13. Terminal A sends SOM in preparation for retransmitting the entire message.

15. Terminal A retransmits frame 2. Terminal B receives SOM indicating an incoming message.

16. Terminal A retransmits frame 3. Terminal B receives frame 1, recognizes that frame 1 has already been received error-free, and discards the newly received copy. Note that even though frame 1 is received with uncorrectable errors it is not added to the NAK list since it has previously been received error-free.

17. Terminal A sends EOM. Terminal B receives frame 2.

18. Terminal B receives frame 3, recognizes that frame 3 has already been received error-free, and discards the newly received copy.

19. Terminal B receives EOM. All frames received by Terminal B at this point are contiguous, so Terminal B will respond with REPORT containing a null NAK list.

20. Terminal B sends SOM to frame the REPORT. Terminal B also passes the information contained in all contiguously received frames (frames 2 and 3 in this example) to the Message Layer.

21. Terminal B sends REPORT, indicating that frames up to and including frame 3 have been received correctly.

22. Terminal B sends EOM. Terminal A should begin receiving the SOM at this point, but this example assumes that the entire REPORT message, including the SOM and EOM framing, is lost.

23. The retransmission timeout at Terminal A expires, indicating that Terminal A has not received REPORT. Terminal A must retransmit the entire message.

24. Terminal A sends SOM in preparation for retransmitting the entire message.

25. Terminal A retransmits frame 1.

27. Terminal A retransmits frame 3. Terminal B receives frame 1, recognizes that frame 1 has already been received error-free, and discards the newly received copy. Note that even though frame 1 is received with uncorrectable errors it is not added to the NAK list since it has previously been received error-free.

28. Terminal A sends EOM. Terminal B receives frame 2, recognizes that frame 2 has already been received error-free, and discards the newly received copy. Note that even though frame 2 is received with uncorrectable errors it is not added to the NAK list since it has previously been received error-free.

29. Terminal B receives frame 3, recognizes that frame 3 has already been received error-free, and discards the newly received copy. Note that even though frame 3 is received with uncorrectable errors it is not added to the NAK list since it has previously been received error-free.

30. Terminal B receives EOM. All frames received by Terminal B at this point are contiguous, so Terminal B will respond with REPORT containing a null NAK list. Even though Terminal B has already sent a REPORT message acknowledging through block 3, it must send it again to prevent Terminal A from retransmitting again.

31. Terminal B sends SOM to frame the REPORT.

32. Terminal B sends REPORT, indicating that frames up to and including frame 3 have been received correctly.

33. Terminal B sends EOM. Terminal A receives SOM, indicating an incoming message.

34. Terminal A receives REPORT indicating that all frames through frame 3 have been received correctly. Terminal A may now discard the locally stored copies of frames 1, 2, and 3.

35. Terminal A receives EOM.

36. If necessary, the Transport Layer may inform the Message Layer that the CAPABILITIES message has been successfully transported.
A.5 Normal Transition from Signaling to Full Bandwidth Application

1. The Message Layer at Terminal A determines that a CRYPTOSYNC message needs to be sent. This example assumes that the CRYPTOSYNC message sent from the Message Layer at Terminal A is between 27 and 39 octets long, resulting in 3 frames at the Transport Layer.
2. The Transport Layer at Terminal A receives the CRYPTOSYNC message from the Message Layer, divides it into 3 frames, and begins sending SOM to frame the outgoing frames.
3. This example assumes that the most recent transmitted frame from Terminal A was number
 54. Terminal A sends frame 55 & stores a local copy for possible retransmission.
4. Terminal A sends frame 56 & stores a local copy for possible retransmission. Terminal B
 receives SOM, indicating an incoming message.
5. Terminal A sends frame 57 & stores a local copy for possible retransmission. Terminal B
 receives frame 55.
6. Terminal A sends EOM since all frames of the CRYPTOSYNC message have been sent.
 Terminal B receives frame 56.
7. Terminal B receives frame 57.
8. Terminal B receives EOM, indicating that the incoming message is complete.
9. Terminal B knows of no outstanding frames and will therefore send a REPORT message
 indicating that frames up through 57 have been received correctly. A SOM is sent to frame
 the REPORT message. Terminal B concatenates the payload data from received frames 55-57
 and passes it to the Message Layer, which determines that it forms a valid
 CRYPTOSYNC message.
10. Terminal B sends REPORT indicating that all frames up to and including frame 57 have been
 received correctly.
11. Terminal A receives SOM, indicating a new incoming message. Terminal B sends EOM,
 indicating the end of the REPORT.
12. Terminal A receives REPORT indicating that frames up to and including frame 57 have been
 received correctly. Terminal A may now delete its local copy of transmitted frames 55-57
 since it knows that no further retransmissions of these frames will be necessary. This
 example assumes that at this time Terminal B determines that a CRYPTOSYNC message
 needs to be sent. The CRYPTOSYNC message is passed from the Message Layer to the
 Transport Layer at Terminal B.
13. Terminal A receives EOM, indicating the end of the received REPORT. Terminal B sends
 SOM to frame the outgoing Transport Layer frames.
14. The Transport Layer at Terminal A informs the Message Layer that the CRYPTOSYNC
 message has been successfully transported. Terminal B sends frame 77 and stores a local
 copy for possible retransmission.
15. Terminal B sends frame 78 & stores a local copy for possible retransmission. Terminal A
 receives SOM, indicating the beginning of an incoming message.
16. Terminal B sends frame 79 & stores a local copy for possible retransmission. Terminal A
 receives frame 77.
17. Terminal A receives frame 78. Terminal B sends EOM since all frames of the
 CRYPTOSYNC message have been sent.
18. Terminal A receives frame 79.
19. Terminal A receives EOM, indicating that the incoming message is complete.
20. Terminal A knows of no outstanding frames and will therefore send REPORT indicating that
 all frames up through 79 have been received correctly. A SOM is sent to frame the REPORT.
 Terminal A concatenates the payload data from received frames 77-79 and passes it to the
 Message Layer, which determines that it forms a valid CRYPTOSYNC message.
21. Terminal A sends REPORT indicating that all frames up to and including frame 79 have
 been received correctly. Terminal A now knows that it is ready to transition to full bandwidth
 traffic. The Message Layer informs the Transport Layer that the change should occur as
 soon as any queued Transport Layer frames are sent.
22. Terminal B receives SOM, indicating a new incoming message. Terminal A sends EOM, indicating the end of the REPORT.

23. Terminal A sends FILLER in preparation for the transition from signaling to traffic. Terminal B receives REPORT indicating that all frames up through 79 have been received correctly.

24. Terminal A sends START, indicating that subsequent transmissions will be full bandwidth traffic. Terminal A has not detected incoming START, so the Application Timer is started. Terminal B receives EOM, indicating the end of the received REPORT.

25. Terminal B informs the Message Layer that the CRYPTOSYNC message has been successfully transported. Terminal B also receives FILLER.

26. Terminal B now knows that it is ready to transition to full bandwidth traffic. The Message Layer informs the Transport Layer that the change should occur as soon as any queued Transport Layer frames are sent. Terminal B also receives START, indicating that subsequent incoming information will be full bandwidth. Terminal B begins searching for ESC and Sync Management patterns rather than SOM and START patterns.

27. Terminal B sends FILLER in preparation for the transition from signaling to traffic.

28. This example assumes at this point that voice frames are available to be transmitted from Terminal A. The Message Layer at Terminal A begins transferring the first superframe (a1). Terminal B sends START, indicating that subsequent transmissions will be full bandwidth traffic. Terminal B does not start its Application Timer since incoming START has already been detected and Terminal B is no longer searching for incoming START.

29. Terminal A continues sending superframe a1 and receives incoming FILLER.

30. Terminal A continues sending superframe a1 and receives incoming START from Terminal B. Terminal A stops the Application Timer which has been running since START was transmitted. Terminal A begins searching for ESC and Sync Management patterns rather than SOM and START patterns. Terminal B begins receiving superframe a1 from Terminal A.

31. Terminal A continues sending superframe a1. This example assumes at this point that voice frames are available to be transmitted from Terminal B. The Message Layer at Terminal B begins sending the first superframe (b1).

32. Terminal B continues sending superframe b1 and receiving superframe a1.

33. Terminal A begins receiving superframe b1. Terminal B continues sending superframe b1 and receiving superframe a1.

34. Terminal A continues receiving superframe b1. Terminal B continues sending superframe b1.

35. Terminal A continues receiving superframe b1.

36. Terminal A continues receiving superframe b1.
A.6 Transition from Signaling to Full Bandwidth Application with Final REPORT Lost

<table>
<thead>
<tr>
<th></th>
<th>Terminal A</th>
<th></th>
<th>Terminal B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Message Layer</td>
<td>Transport Layer</td>
<td>Message Layer</td>
<td>Transport Layer</td>
</tr>
<tr>
<td></td>
<td>TX RX</td>
<td>TX RX</td>
<td>TX RX</td>
<td>TX RX</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cryptosync</td>
<td></td>
<td>SOM</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td></td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>56</td>
<td></td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>57</td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>EOM</td>
<td></td>
<td>EOM</td>
<td>payload 55-57</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>SOM</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>RPT(57/0)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>EOM</td>
<td>Cryptosync</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>SOM</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>RPT(57/0)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>SOM</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>77</td>
<td>payload 77-</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>78</td>
<td>79</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>78</td>
<td>EOM</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>EOM</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>SOM</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>RPT(79/0)</td>
<td>(full bw)</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>EOM</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>FILLER</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>START</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>FILLER</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td>START</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td>SOM</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td>SOM</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td>78</td>
<td>EOM</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td>SF(a1)</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>SF(a2)</td>
<td>SF(a2)</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>SOM</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td>SF(a2)</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>SF(a3)</td>
<td>SF(a3)</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td>EOM</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td>SF(a3)</td>
<td>(complete)</td>
</tr>
<tr>
<td>42</td>
<td>SF(a4)</td>
<td>SF(a4)</td>
<td>START</td>
<td>(full bw)</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td>FILLER</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>SF(a4)</td>
<td>SF(a4)</td>
<td>START</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>SF(a4)</td>
<td>SF(a4)</td>
<td>SF(a4)</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>SF(b1)</td>
<td>SF(b1)</td>
<td>SF(b1)</td>
<td>SF(b1)</td>
</tr>
</tbody>
</table>
1. The Message Layer at Terminal A determines that a CRYPTOSYNC message needs to be sent. This example assumes that the CRYPTOSYNC message sent from the Message Layer at Terminal A is between 27 and 39 octets long, resulting in 3 frames at the Transport Layer.

2. The Transport Layer at Terminal A receives the CRYPTOSYNC message from the Message Layer, divides it into 3 frames, and begins sending SOM to frame the outgoing frames.

3. This example assumes that the most recent transmitted frame from Terminal A was number 54. Terminal A sends frame 55 & stores a local copy for possible retransmission.

4. Terminal A sends frame 56 & stores a local copy for possible retransmission. Terminal B receives SOM, indicating an incoming message.

5. Terminal A sends frame 57 & stores a local copy for possible retransmission. Terminal B receives frame 55.

6. Terminal A sends EOM since all frames of the CRYPTOSYNC message have been sent. Terminal B receives frame 56.

7. Terminal B receives frame 57.

8. Terminal B receives EOM, indicating that the incoming message is complete.

9. Terminal B knows of no outstanding frames and will therefore send a REPORT message indicating that frames up through 57 have been received correctly. A SOM is sent to frame the REPORT message. Terminal B concatenates the payload data from received frames 55-57 and passes it to the Message Layer, which determines that it forms a valid CRYPTOSYNC message.

10. Terminal B sends REPORT indicating that all frames up to and including frame 57 have been received correctly.

11. Terminal A receives SOM, indicating a new incoming message. Terminal B sends EOM, indicating the end of the REPORT.

12. Terminal A receives REPORT indicating that frames up to and including frame 57 have been received correctly. Terminal A may now delete its local copy of transmitted frames 55-57 since it knows that no further retransmissions of these frames will be necessary. This example assumes that at this time Terminal B determines that a CRYPTOSYNC message needs to be sent. The CRYPTOSYNC message is passed from the Message Layer to the Transport Layer at Terminal B.

13. Terminal A receives EOM, indicating the end of the received REPORT. Terminal B sends SOM to frame the outgoing Transport Layer frames.

14. The Transport Layer at Terminal A informs the Message Layer that the CRYPTOSYNC message has been successfully transported. Terminal B sends frame 77 and stores a local copy for possible retransmission.

15. Terminal B sends frame 78 & stores a local copy for possible retransmission. Terminal A receives SOM, indicating the beginning of an incoming message.

16. Terminal B sends frame 79 & stores a local copy for possible retransmission. Terminal A receives frame 77.

17. Terminal A receives frame 78. Terminal B sends EOM since all frames of the CRYPTOSYNC message have been sent.

18. Terminal A receives frame 79.

19. Terminal A receives EOM, indicating that the incoming message is complete.
20. Terminal A knows of no outstanding frames and will therefore send REPORT indicating that all frames up through 79 have been received correctly. A SOM is sent to frame the REPORT. Terminal A concatenates the payload data from received frames 77-79 and passes it to the Message Layer, which determines that it forms a valid CRYPTOSYNC message.

21. Terminal A sends REPORT indicating that all frames up to and including frame 79 have been received correctly. Terminal A now knows that it is ready to transition to full bandwidth traffic. The Message Layer informs the Transport Layer that the change should occur as soon as any queued Transport Layer frames are sent.

22. This example assumes that Terminal B does not receive SOM from Terminal A which should have arrived at this point. Terminal A sends EOM indicating the end of the REPORT.

23. Terminal A sends FILLER in preparation for the transition from signaling to traffic. This example assumes that Terminal B does not receive REPORT(79/0) from Terminal A which should have arrived at this point.

24. Terminal A sends START, indicating that subsequent transmissions will be full bandwidth traffic. Terminal A has not detected incoming START, so the Application Timer is started. This example assumes that Terminal B does not receive EOM from Terminal A which should have arrived at this point.

25. Terminal B receives FILLER.

26. Terminal B receives START, indicating that subsequent incoming information will be full bandwidth. Terminal B begins searching for ESC and Sync Management patterns rather than SOM and START patterns.

27. Terminal B times out waiting for Terminal A to acknowledge outstanding Transport Layer frames. Terminal B must therefore resend the previous frames to trigger another REPORT message from Terminal A. Terminal B sends SOM to frame the outgoing frames. Note that these outgoing frames do not need to be preceded by ESC since Terminal B has not sent a START message.

28. This example assumes at this point that voice frames are available to be transmitted from Terminal A. The Message layer at Terminal A begins sending superframe a1.

29. Terminal A continues sending superframe a1 and receives SOM, indicating an incoming Transport Layer message. Terminal B sends frame 78.

30. Terminal A continues sending superframe a1 and receives frame 77. Terminal B sends frame 79 and begins receiving superframe a1.

31. Terminal A continues sending superframe a1 and receives frame 78. Terminal B sends EOM and continues receiving superframe a1.

32. Terminal A begins sending superframe a2 and receives frame 79. Terminal B continues receiving superframe a1.

33. Terminal A continues sending superframe a2 and receives EOM. Terminal A now knows that it must return a REPORT message and must therefore transition back to the signaling mode. The Application Timer which is running at Terminal A is stopped.

34. Since Terminal A has already sent a START message, it must precede the outgoing Transport Layer frames with ESC. Terminal B begins receiving superframe a2.

35. Terminal A sends SOM to frame the outgoing REPORT message. Terminal B continues receiving superframe a2.
36. Terminal A sends REPORT indicating that frames up through 79 have been received correctly. Terminal B receives ESC indicating that subsequent information will be framed at the Transport Layer. Terminal B begins searching for SOM and START patterns rather than ESC and Sync Management patterns.

37. Terminal A sends EOM to frame the outgoing REPORT message. Terminal B receives SOM indicating an incoming Transport Layer message.

38. Terminal A recognizes that it has no more Transport Layer information to send and transitions back to traffic mode by sending START to indicate that subsequent information will be full bandwidth traffic. The Application Timer at Terminal A is reinitialized and restarted since incoming START has not been detected. Terminal B receives REPORT indicating that frames up through 79 have been received properly.

39. Terminal B receives EOM, indicating the end of the received REPORT.

40. This example assumes at this point that voice frames are available to be transmitted from Terminal A. The Message Layer at Terminal A begins sending superframe a4. Terminal B informs the Message Layer that the CRYPTOSYNC message has been successfully transported. Terminal B also receives START, indicating that subsequent incoming information will be full bandwidth traffic. Terminal B begins searching for ESC and Sync Management patterns rather than SOM and START patterns.

41. Terminal A continues to send superframe a4. Terminal B now knows that it is ready to transition to full bandwidth traffic. The Message Layer informs the Transport Layer that the change should occur as soon as any queued Transport Layer frames are sent.

42. Terminal A continues to send superframe a4. Terminal B sends FILLER in preparation for the transition from signaling to traffic. Terminal B also begins receiving superframe a4.

43. Terminal A continues to send superframe a4. Terminal B sends START, indicating that subsequent transmissions will be full bandwidth traffic. Terminal B does not start its Application Timer since incoming START has already been detected and Terminal B is no longer searching for incoming START. Terminal B continues receiving superframe a4.

44. Terminal A begins sending superframe a5 and receives incoming FILLER. This example assumes at this point that voice frames are available to be transmitted from Terminal B. The Message Layer at Terminal B begins sending superframe b1. Terminal B continues receiving superframe a4.

45. Terminal A continues sending superframe a5 and receives incoming START from Terminal B. Terminal A stops the Application Timer which has been running since START was transmitted. Terminal A begins searching for ESC and Sync Management patterns rather than SOM and START patterns. Terminal B continues receiving superframe a4 from Terminal A.

46. Terminal A continues sending superframe a5 and begins receiving superframe b1. Terminal B continues sending superframe b1 and begins receiving superframe a5.
A.7 Transition from Signaling to Full Bandwidth Application with START Lost

<table>
<thead>
<tr>
<th></th>
<th>Terminal A</th>
<th>Transport Layer</th>
<th>Terminal B</th>
<th>Message Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>RX</td>
<td>TX</td>
<td>RX</td>
<td>TX</td>
</tr>
<tr>
<td>1</td>
<td>Crypssync</td>
<td>SOM</td>
<td></td>
<td>SOM</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>EOM</td>
<td></td>
<td></td>
<td>EOM</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SOM</td>
<td></td>
<td>payload 55-57</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SOM</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>11</td>
<td>RPT(57/0)</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>12</td>
<td>RPT(57/0)</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>13</td>
<td>SOM</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>14</td>
<td>SOM</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>15</td>
<td>SOM</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>16</td>
<td>SOM</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>17</td>
<td>SOM</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>18</td>
<td>SOM</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>19</td>
<td>SOM</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>20</td>
<td>SOM</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>21</td>
<td>SOM</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>22</td>
<td>SOM</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>23</td>
<td>SOM</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>24</td>
<td>SOM</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>25</td>
<td>SOM</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>26</td>
<td>SOM</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>27</td>
<td>SOM</td>
<td></td>
<td>EOM</td>
<td>SOM</td>
</tr>
<tr>
<td>28</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>29</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>30</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>31</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>32</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>33</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>34</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>35</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>36</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>37</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>38</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>39</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>40</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>41</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>42</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>43</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>44</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>45</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
<tr>
<td>46</td>
<td>SF(a1)</td>
<td>SF(a1)</td>
<td>FILLER</td>
<td>SF(a1)</td>
</tr>
</tbody>
</table>
1. The Message Layer at Terminal A determines that a CRYPTOSYNC message needs to be sent. This example assumes that the CRYPTOSYNC message sent from the Message Layer at Terminal A is between 27 and 39 octets long, resulting in 3 frames at the Transport Layer.

2. The Transport Layer at Terminal A receives the CRYPTOSYNC message from the Message Layer, divides it into 3 frames, and begins sending SOM to frame the outgoing frames.

3. This example assumes that the most recent transmitted frame from Terminal A was number 54. Terminal A sends frame 55 & stores a local copy for possible retransmission.

4. Terminal A sends frame 56 & stores a local copy for possible retransmission. Terminal B receives SOM, indicating an incoming message.

5. Terminal A sends frame 57 & stores a local copy for possible retransmission. Terminal B receives frame 55.

6. Terminal A sends EOM since all frames of the CRYPTOSYNC message have been sent. Terminal B receives frame 56.

7. Terminal B receives frame 57.

8. Terminal B receives EOM, indicating that the incoming message is complete.

9. Terminal B knows of no outstanding frames and will therefore send a REPORT message indicating that frames up through 57 have been received correctly. A SOM is sent to frame the REPORT message. Terminal B concatenates the payload data from received frames 55-57 and passes it to the Message Layer, which determines that it forms a valid CRYPTOSYNC message.

10. Terminal B sends REPORT indicating that all frames up to and including frame 57 have been received correctly.

11. Terminal A receives SOM, indicating a new incoming message. Terminal B sends EOM, indicating the end of the REPORT.

12. Terminal A receives REPORT indicating that frames up to and including frame 57 have been received correctly. Terminal A may now delete its local copy of transmitted frames 55-57 since it knows that no further retransmissions of these frames will be necessary. This example assumes that at this time Terminal B determines that a CRYPTOSYNC message needs to be sent. The CRYPTOSYNC message is passed from the Message Layer to the Transport Layer at Terminal B.

13. Terminal A receives EOM, indicating the end of the received REPORT. Terminal B sends SOM to frame the outgoing Transport Layer frames.

14. The Transport Layer at Terminal A informs the Message Layer that the CRYPTOSYNC message has been successfully transported. Terminal B sends frame 77 and stores a local copy for possible retransmission.

15. Terminal B sends frame 78 & stores a local copy for possible retransmission. Terminal A receives SOM, indicating the beginning of an incoming message.

16. Terminal B sends frame 79 & stores a local copy for possible retransmission. Terminal A receives frame 77.

17. Terminal A receives frame 78. Terminal B sends EOM since all frames of the CRYPTOSYNC message have been sent.

18. Terminal A receives frame 79.

19. Terminal A receives EOM, indicating that the incoming message is complete.
20. Terminal A knows of no outstanding frames and will therefore send REPORT indicating that all frames up through 79 have been received correctly. A SOM is sent to frame the REPORT. Terminal A concatenates the payload data from received frames 77-79 and passes it to the Message Layer, which determines that it forms a valid CRYPTOSYNC message.

21. Terminal A sends REPORT indicating that all frames up to and including frame 79 have been received correctly. Terminal A now knows that it is ready to transition to full bandwidth traffic. The Message Layer informs the Transport Layer that the change should occur as soon as any queued Transport Layer frames are sent.

22. Terminal B receives SOM, indicating a new incoming message. Terminal A sends EOM indicating the end of the REPORT.

23. Terminal A sends FILLER in preparation for the transition from signaling to traffic. Terminal B receives REPORT indicating that all frames up through 79 have been received correctly.

24. Terminal A sends START, indicating that subsequent transmissions will be full bandwidth traffic. Terminal A has not detected incoming START, so the Application Timer is started. Terminal B receives EOM, indicating the end of the received REPORT.

25. Terminal B informs the message layer that the CRYPTOSYNC message has been successfully transported. This example assumes that the FILLER transmitted from Terminal A is not received at Terminal B.

26. Terminal B now knows that it is ready to transition to full bandwidth traffic. The Message Layer informs the Transport Layer that the change should occur as soon as any queued Transport Layer frames are sent. This example assumes that the START transmitted from Terminal A is not received at Terminal B.

27. Terminal B sends FILLER in preparation for the transition from signaling to traffic.

28. This example assumes at this point that voice frames are available to be transmitted from Terminal A. The Message Layer at Terminal A begins transferring superframe a1. Terminal B sends START, indicating that subsequent transmissions will be full bandwidth traffic. Terminal B has not detected incoming START, so the Application Timer is started.

29. Terminal A continues sending superframe a1 and receives incoming FILLER.

30. Terminal A continues sending superframe a1 and receives incoming START. Terminal A stops the Application Timer which has been running since START was transmitted. Terminal A begins searching for ESC and Sync Management patterns rather than SOM and START patterns in the incoming data stream. Terminal B begins receiving superframe a1. Note that superframe a1 is not detected at Terminal B since Terminal B has not seen START and is therefore looking for SOM and START patterns rather than Sync Management patterns.

31. Terminal A continues sending superframe a1. Superframe a1 is still not detected at Terminal B.

32. Terminal A begins sending superframe a2. Superframe a1 is still not detected at Terminal B.

33. Terminal A continues sending superframe a2. This example assumes at this point that voice frames are available to be transmitted from Terminal B. The Message Layer at Terminal B begins transferring superframe b1. Superframe a1 is still not detected at Terminal B.

34. Terminal A continues sending superframe a2. Terminal B continues sending superframe b1. Terminal B begins receiving superframe a2. Note that superframe a2 is not detected at Terminal B since Terminal B has not seen START and is therefore looking for SOM and START patterns rather than Sync Management patterns.
35. Terminal A continues sending superframe a2 and begins receiving superframe b1. Terminal B continues sending superframe b1. Superframe a2 is still not detected at Terminal B.
36. Terminal A begins sending superframe a3 and continues receiving superframe b1. Terminal B continues sending superframe b1. Superframe a2 is still not detected at Terminal B. The Application Timer at Terminal B expires, indicating that Terminal B has not detected incoming START.
37. Terminal A continues sending superframe a3 and receiving superframe b1. Terminal B sends ESC as a result of the Application Timer expiring. Superframe a2 is still not detected at Terminal B.
38. Terminal A continues sending superframe a3 and receiving superframe b1. Terminal B sends START. Terminal B has not detected incoming START, so the Application Timer is reinitialized and restarted. Terminal B begins receiving superframe a3. Note that superframe a3 is not detected at Terminal B since Terminal B has not seen START and is therefore looking for SOM and START patterns rather than Sync Management patterns.
39. Terminal A continues sending superframe a3 and receives ESC. Terminal A therefore knows that subsequent incoming data will be Transport Layer framed data and begins looking for SOM and START patterns rather than ESC and Sync Management patterns.
40. Terminal A begins sending superframe a4 and receives START, indicating that subsequent incoming information will be full bandwidth traffic. Terminal A recognizes that incoming START was detected while the Application Timer is not running, and is therefore required to send ESC and START. Superframe a3 is still not detected at Terminal B.
41. Terminal A stops sending superframe a4 and sends ESC. Terminal B begins sending superframe b3. Superframe a3 is still not detected at Terminal B.
42. Terminal A sends START. Terminal A does not start its Application Timer since incoming START has already been detected and Terminal A is no longer searching for incoming START. Terminal A begins searching for ESC and Sync Management patterns rather than SOM and START patterns in the incoming data stream. Terminal B begins receiving superframe a4. Note that superframe a4 is not detected at Terminal B since Terminal B has not seen START and is therefore looking for SOM and START patterns rather than Sync Management patterns.
43. Terminal A begins receiving superframe b3. Terminal B continues sending superframe b3 and receives ESC. Terminal B therefore knows that subsequent incoming data will be Transport Layer framed data and continues looking for SOM and START patterns rather than ESC and Sync Management patterns.
44. Terminal A begins sending superframe a5 and continues receiving superframe b3. Terminal B continues sending superframe b3 and receives START, indicating that subsequent incoming information will be full bandwidth traffic. Terminal B stops the Application Timer which has been running since START was transmitted. Terminal B begins searching for ESC and Sync Management patterns rather than SOM and START patterns in the incoming data stream.
45. Terminal A continues sending superframe a5 and receiving superframe b3. Terminal B begins sending superframe b4.
46. Terminal A continues sending superframe a5 and receiving superframe b3. Terminal B continues receiving superframe b4 and begins receiving superframe a5.
A.8 Two Way Resync from Full Bandwidth Application, Terminal A is Leader

1. This example begins by assuming that both Terminal A and Terminal B are in traffic mode. Terminal A is sending superframe #15. Terminal B is receiving superframe #14.
2. Terminal A begins the Two Way Resync procedure by transferring a Cryptosync message to its Transport Layer for transmission to the remote terminal.
3. Since Terminal A is in traffic mode, an ESCAPE is sent to alert the remote end that Transport Layer signaling is occurring. Terminal B receives superframe a15.
4. Terminal A sends SOM to frame the outgoing Cryptosync message.
5. This example assumes that the Cryptosync message is between 27 and 39 bytes long, resulting in three frames at the Transport Layer, and that the most recently transmitted Transport Layer frame was #87. Frame 88 is therefore sent. Terminal B receives ESCAPE indicating the beginning of an incoming Transport Layer message.

6. Terminal A sends frame 89. Terminal B receives the SOM.

8. Terminal A sends EOM to frame the outgoing Cryptosync message. Terminal B receives frame 89.

9. Terminal B receives frame 90.

10. Terminal B receives EOM indicating the end of the incoming Transport Layer message.

11. Terminal B knows of no outstanding frames and will therefore acknowledge frame 90 using a REPORT message. Terminal B sends ESCAPE to alert the remote end that Transport Layer signaling is occurring. Terminal B passes the payload information from frames 88 to 90 to the Message Layer, which determines that it is a valid Cryptosync message.

12. Terminal B sends SOM to frame the REPORT message. This example assumes that Terminal B is ready to send Cryptosync at this point, so it is transferred to the Transport Layer.

13. Terminal B sends REPORT indicating that frames through 90 have been received correctly. Terminal A receives ESCAPE indicating the beginning of an incoming Transport Layer message.

14. Terminal A receives SOM indicating an incoming message. Terminal B sends EOM, framing the REPORT message.

15. Terminal A receives REPORT. Terminal B sends SOM to frame the outgoing Cryptosync message.

16. Terminal A receives EOM. This example assumes that the Cryptosync message is between 27 and 39 bytes long, resulting in three frames at the Transport Layer, and that the most recently transmitted Transport Layer frame was #31. Frame 32 is therefore sent.

17. The Transport Layer at Terminal A informs the Message Layer that the Cryptosync message has been successfully transported. Terminal A receives SOM indicating an incoming message. Terminal B sends frame 33.

18. Terminal A receives frame 32. Terminal B sends frame 34.

19. Terminal A receives frame 33. Terminal B sends EOM to frame the outgoing Cryptosync message.

20. Terminal A receives frame 34.

21. Terminal A receives EOM.

22. Terminal A knows of no outstanding frames and will therefore acknowledge frame 34 using a REPORT message. SOM is sent to frame the REPORT. Terminal A passes the payload information from frames 32 to 34 to the Message Layer, which determines that it is a valid Cryptosync message.

23. The Message Layer at Terminal A now knows that Cryptosync has been sent and received, so it informs the Transport Layer to transition back to traffic mode. Terminal A sends REPORT indicating that frames through 34 have been received correctly.

24. The Message Layer at Terminal A begins passing superframes to the Transport Layer, which is still busy with Transport Layer signaling. Terminal A sends EOM to frame the REPORT. Terminal B receives SOM.
25. Terminal A is now ready to transition to full bandwidth mode and sends FILLER since Cryptosync was the last message transferred. Terminal B receives REPORT.

26. Terminal A sends START to complete the transition to full bandwidth mode. Terminal A starts the Application Timer since START has not been received. Terminal B receives EOM.

27. Terminal B receives FILLER. The Transport Layer at Terminal B informs the Message Layer that the Cryptosync message has been successfully transported.

28. Terminal A begins sending superframe a17. Terminal B receives START. The Message Layer at Terminal B recognizes that Cryptosync has been received and sent and therefore instructs the Transport Layer to transition back to full bandwidth mode.

29. Terminal A continues sending superframe a17. Terminal B sends FILLER in preparation for transitioning to full bandwidth mode.

30. Terminal A continues sending superframe a17. Terminal B sends START to complete the transition to full bandwidth mode. The Application Timer at Terminal B is not started since incoming START has already been detected. Terminal B begins receiving superframe a17.

31. Terminal A continues sending superframe a17 and receives incoming FILLER. Terminal B continues receiving superframe a17.

32. Terminal A begins sending superframe a18 and receives incoming START. The Application Timer at Terminal A is stopped. Terminal B continues receiving superframe a17.

33. Terminal A continues sending superframe a18. Terminal B continues receiving superframe a17.
A.9 Two Way Resync from Full Bandwidth Application with Corrupted ESC Sequence, Terminal A is Leader

<table>
<thead>
<tr>
<th>Terminal A</th>
<th>Transport Layer</th>
<th>Message Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>RX</td>
<td>TX</td>
</tr>
<tr>
<td>SF(a15)</td>
<td>SF(a15)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cryptosync</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESC</td>
<td>SF(a15)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SOM</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EOM</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timeout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESC</td>
<td>SOM</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>EOM</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>payload 88-90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cryptosync</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESC</td>
<td>RPT(90/0)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>SOM</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>EOM</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>SOM</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>EOM</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyld 32-34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF(a16)</td>
<td>RPT(34/0)</td>
<td>SOM</td>
</tr>
<tr>
<td>36</td>
<td>FILLER</td>
<td>RPT(34/0)</td>
</tr>
<tr>
<td>38</td>
<td>START</td>
<td>SOM</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>FILLER</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>START</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terminal B</th>
<th>Transport Layer</th>
<th>Message Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>RX</td>
<td>TX</td>
</tr>
<tr>
<td>SF(a14)</td>
<td>SF(a15)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(full BW)

A-27
1. This example begins by assuming that both Terminal A and Terminal B are in traffic mode. Terminal A is sending superframe #15. Terminal B is receiving superframe #14.

2. Terminal A begins the Two Way Resync procedure by transferring a Cryptosync message to its Transport Layer for transmission to the remote terminal.

3. Since Terminal A is in traffic mode, an ESCAPE is sent to alert the remote end that Transport Layer signaling is occurring. Terminal B receives superframe a15.

4. Terminal A sends SOM to frame the outgoing Cryptosync message.

5. This example assumes that the Cryptosync message is between 27 and 39 bytes long, resulting in three frames at the Transport Layer, and that the most recently transmitted Transport Layer frame was #87. Frame 88 is therefore sent. Terminal B should receive ESC at this point, but this example assumes that the ESC is lost.

6. Terminal A sends frame 89. Terminal B should receive SOM but this example assumes that it is lost.

7. Terminal A sends frame 90. Terminal B should receive frame 88 but this example assumes that it is lost.

8. Terminal A sends EOM to frame the outgoing Cryptosync. Terminal B receives frame 89 but it is not detected since Terminal B missed ESC and is therefore searching for ESC and Sync Management frames.

9. Terminal B receives frame 90 but it is not detected since Terminal B missed ESC and is therefore searching for ESC and Sync Management frames.

10. Terminal B receives EOM but it is not detected since Terminal B missed ESC and is therefore searching for ESC and Sync Management frames.

11. The Retransmission Timer at Terminal A eventually times out and forces Terminal A to resend the previous frames.

12. Since the previous Transport Layer transmission from Terminal A began with ESCAPE, an ESCAPE is again sent.

13. Terminal A sends SOM to frame the outgoing Cryptosync message retransmission.

14. Terminal B receives ESCAPE indicating the beginning of an incoming Transport Layer message. Terminal A sends frame 88

15. Terminal A sends frame 89. Terminal B receives the SOM.

17. Terminal A sends EOM to frame the outgoing Cryptosync message. Terminal B receives frame 89.

18. Terminal B receives frame 90.

19. Terminal B receives EOM indicating the end of the incoming Transport Layer message.

20. Terminal B knows of no outstanding frames and will therefore acknowledge frame 90 using a REPORT message. Terminal B sends ESCAPE to alert the remote end that Transport Layer signaling is occurring. Terminal B passes the payload information from frames 88 to 90 to the Message Layer, which determines that it is a valid Cryptosync message.

21. Terminal B sends SOM to frame the REPORT message. This example assumes that Terminal B is ready to send Cryptosync at this point, so it is transferred to the Transport Layer.

22. Terminal B sends REPORT indicating that frames through 90 have been received correctly. Terminal A receives ESCAPE indicating the beginning of an incoming Transport Layer message.
23. Terminal A receives SOM indicating an incoming message. Terminal B sends EOM, framing the REPORT message.

24. Terminal A receives REPORT. Terminal B sends SOM to frame the outgoing Cryptosync message.

25. Terminal A receives EOM. This example assumes that the Cryptosync message is between 27 and 39 bytes long, resulting in three frames at the Transport Layer, and that the most recently transmitted Transport Layer frame was #31. Frame 32 is therefore sent.

26. The Transport Layer at Terminal A informs the Message Layer that the Cryptosync message has been successfully transported. Terminal A receives SOM indicating an incoming message. Terminal B sends frame 33.

27. Terminal A receives frame 32. Terminal B sends frame 34.

28. Terminal A receives frame 33. Terminal B sends EOM to frame the outgoing Cryptosync message.

29. Terminal A receives frame 34.

30. Terminal A receives EOM.

31. Terminal A knows of no outstanding frames and will therefore acknowledge frame 34 using a REPORT message. SOM is sent to frame the REPORT. Terminal A passes the payload information from frames 32 to 34 to the Message Layer, which determines that it is a valid Cryptosync message.

32. The Message Layer at Terminal A now knows that Cryptosync has been sent and received, so it informs the Transport Layer to transition back to traffic mode. Terminal A sends REPORT indicating that frames through 34 have been received correctly.

33. The Message Layer at Terminal A begins passing superframes to the Transport Layer, which is still busy with Transport Layer signaling. Terminal A sends EOM to frame the REPORT. Terminal B receives SOM.

34. Terminal A is now ready to transition to full bandwidth mode and sends FILLER since Cryptosync was the last message transferred. Terminal B receives REPORT.

35. Terminal A sends START to complete the transition to full bandwidth mode. Terminal A starts the Application Timer since START has not been received. Terminal B receives EOM.

36. Terminal B receives FILLER. The Transport Layer at Terminal B informs the Message Layer that the Cryptosync message has been successfully transported.

37. Terminal A begins sending superframe a17. Terminal B receives START. The Message Layer at Terminal B recognizes that Cryptosync has been received and sent and therefore instructs the Transport Layer to transition back to full bandwidth mode.

38. Terminal A continues sending superframe a17. Terminal B sends FILLER in preparation for transitioning to full bandwidth mode.

39. Terminal A continues sending superframe a17. Terminal B sends START to complete the transition to full bandwidth mode. The Application Timer at Terminal B is not started since incoming START has already been detected. Terminal B begins receiving superframe a17.

40. Terminal A continues sending superframe a17 and receives incoming FILLER. Terminal B continues receiving superframe a17.

41. Terminal A begins sending superframe a18 and receives incoming START. The Application Timer at Terminal A is stopped. Terminal B continues receiving superframe a17.

42. Terminal A continues sending superframe a18. Terminal B continues receiving superframe a17.
A.10 Normal Termination from Full Bandwidth Application, Terminal A is Leader

1. This example begins by assuming that both Terminal A and Terminal B are in full bandwidth traffic mode. Terminal A is sending superframe a15. Terminal B is receiving superframe a14.

2. Terminal A continues sending superframe a15. Terminal B begins receiving superframe a15.

3. Terminal A continues sending superframe a15. Terminal B continues receiving superframe a15.

4. This example assumes that at this point the Message Layer at Terminal A determines that the connection will be terminated. A NOTIFY(terminate) message is transferred to the Transport Layer at Terminal A. Terminal B continues receiving superframe a15.

5. Since Terminal A is in full bandwidth traffic mode, an ESCAPE is sent to alert the remote end that Transport Layer signaling is occurring. Terminal B continues receiving superframe a15.

6. Terminal A sends SOM to frame the outgoing NOTIFY message.

7. This example assumes that the NOTIFY message is between 1 and 13 bytes long, resulting in one frame at the Transport Layer, and that the most recently transmitted Transport Layer frame was #96. Frame 97 is therefore sent to transfer the NOTIFY message. Terminal B receives ESCAPE indicating the beginning of an incoming Transport Layer message.

8. Terminal A sends EOM to frame the outgoing Notify message. Terminal B receives SOM.

9. Terminal A initiates the native signaling to terminate the underlying data connection. Note that Terminal A is not required to wait for an acknowledgement that Terminal B has received frame 97. Terminal B receives frame 97.

10. Terminal B receives EOM indicating the end of the incoming Transport Layer message.
11. Terminal B knows of no outstanding frames and will therefore acknowledge frame 97 using a REPORT message. An ESCAPE is sent to alert the remote end that Transport Layer signaling is occurring. Terminal B passes the payload information from frame 97 to the Message Layer, which determines that it is a valid NOTIFY message.

12. SOM is sent to frame the REPORT.

13. Terminal B sends REPORT indicating that frames through 97 have been received correctly. In this example it is assumed that the underlying channel has been terminated at Terminal A before the ESC arrives.

14. In this example it is assumed that the underlying channel has been terminated at Terminal A before the SOM arrives. Terminal B sends EOM to frame the REPORT.

15. Terminal B initiates the native signaling to terminate the underlying data connection. No additional SCIP signaling is possible.
A.11 Terminal A Sends Notify(Attention) from Full Bandwidth Application

1. This example begins by assuming that both Terminal A and Terminal B are in full bandwidth traffic mode. Terminal A is sending superframe a15. Terminal B is receiving superframe a14.

2. Terminal A continues sending superframe a15. Terminal B continues receiving superframe a14.

3. This example assumes that at this point the Message Layer at Terminal A determines that a Notify(Attention) message is required. A Notify(Attention) message is transferred to the Transport Layer at Terminal A. Terminal B begins receiving superframe a15.

4. Since Terminal A is in full bandwidth traffic mode, ESCAPE is sent to alert the remote end that Transport Layer signaling is occurring. Terminal B continues receiving superframe a14.

5. Terminal A sends SOM to frame the outgoing Notify message.

6. This example assumes that the Notify message is between 1 and 13 bytes long, resulting in one frame at the Transport Layer, and that the most recently transmitted Transport Layer frame was #87. Frame 88 is therefore sent to transfer the Notify message. Terminal B receives ESCAPE indicating the beginning of an incoming Transport Layer message.

7. Terminal A sends EOM to frame the outgoing Notify message. Terminal B receives SOM.
8. Terminal B receives frame 88.

9. Terminal B receives EOM indicating the end of the incoming Transport Layer message.

10. Terminal B knows of no outstanding frames and will therefore acknowledge frame 88 using a REPORT message. ESCAPE is sent to alert the remote end that Transport Layer signaling is occurring. Terminal B passes the payload information from frame 88 to the Message Layer, which determines that it is a valid Notify(Attention) message.

11. Terminal B sends SOM to frame the outgoing REPORT. The Message Layer at Terminal B indicates to the Transport Layer that the full bandwidth traffic mode is to resume.

12. Terminal A receives ESCAPE indicating the beginning of an incoming Transport Layer message. Terminal B sends REPORT indicating that frames through 88 have been received correctly.

13. Terminal A receives SOM, indicating an incoming message. Terminal B sends EOM, framing the outgoing REPORT.

14. Terminal A receives REPORT. Terminal B sends START to resume the full bandwidth traffic application. Note that FILLER is not required since Cryptosync was not transferred. Terminal B has not received incoming START, so the Application Timer is started.

15. Terminal A receives EOM.

16. The Transport Layer at Terminal A informs the Message Layer that the Notify(Attention) message has been successfully transported.

17. The Message Layer at Terminal A indicates to the Transport Layer that the full bandwidth traffic mode is to resume.

18. Terminal A sends START to reinitiate traffic. The Application Timer is not started since incoming START has already been detected.

19. The Transport Layer at Terminal A waits for the beginning of a superframe to begin full bandwidth transmission.

20. Terminal B receives START indicating incoming traffic. The Application Timer is now stopped.

21. The Transport Layer at Terminal A waits for the beginning of a superframe to begin full bandwidth transmission.

22. Terminal A begins sending superframe a17.

23. Terminal A continues sending superframe a17.

THIS PAGE INTENTIONALLY LEFT BLANK.
B.0 DISCONTINUOUS VOICE (DTX)

This appendix describes the requirements associated with Discontinuous Voice (DTX Voice) Operation beyond that described within the signaling plan itself. DTX voice operation is described in general terms with specific values provided in Tables associated with particular modes of operation.

The following features must be managed during DTX voice operation.

- Voice Activity Detection (VAD)
- Grace Period
- Blank Period
- Comfort Noise
- ReStart

Figure B.1 provides a pictorial description of the above features.

B.1 Voice Activity Detection (VAD)

Voice activity detection is used to determine whether speech is present or not in an input signal. A voice activity detection method shall be implemented such that a Voice Activity Factor (VAF), as specified in Table B.1-1, is achieved in accordance with the SCIP DTX Voice VAF performance criteria specified in SCIP-210 Appendix C – PERFORMANCE REQUIREMENTS. The voice activity detection (VAD) algorithm described below is provided as a default solution. Source code for this default VAD algorithm is available as GFE. The GFE source code shall have precedence over the description provided below.
Table B.1-1 DTX VAF Values

<table>
<thead>
<tr>
<th>Voice Mode</th>
<th>Voice Activity Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MELP Blank and Burst</td>
<td>≤ 0.6</td>
</tr>
</tbody>
</table>

Editor's Note: MELP Blank and Burst VAF of ≤ 0.6 is relative to testing performed with test vectors provided by the Government. The VAF test vectors are available from the International ICWG Web site (http://198.184.128.72/iicwg) or on disk from NSA.

B.2 Default Voice Activity Detection (VAD) Algorithm

The following VAD is provided as a default solution. The GFE source code shall have precedence over the description provided below. The VAD uses the energy level of the input speech to determine whether speech or silence is present. The equation

\[\text{Energy} = \sqrt{\frac{(A^H \times A)}{\text{FrameSize}}} \]

is used to calculate the energy of each speech frame, where \(A \) is a vector of one frame of input data, \(A^H \) is the complex conjugate transpose of \(A \), and \(\text{FrameSize} \) is the number of samples per vocoder frame. The minimum (Low RMS) and maximum (High RMS) energy levels are set based on the energy of the input vector. These values are used to calculate an energy threshold that is compared to the present frame’s energy level. The equation

\[\text{Threshold} = (0.07 \times \text{HighRMS}) + (K \times \text{LowRMS}) \]

where \(K \) is a constant, is used to calculate the energy threshold. If frame’s energy is less than the threshold, then the frame is marked as silence. If more than four consecutive frames of speech have energy levels less than the threshold, then it is determined that silence is detected and comfort noise is written out. This mode continues until an input vector’s energy level is above the threshold.
In order to compensate for low energy anomalies, the minimum energy value is slowly increased each time through the loop by a defined delta,

\[\text{LowRMS} = \text{LowRMS} \times \Delta \text{DeltaUp}. \]

\(\Delta \) is initially set to 1.01 and is adjusted depending on whether the LowRMS is reset or not as follows

\[\Delta \text{DeltaUp} = \Delta \text{DeltaUp} \times 1.0001. \]

Editor's Note: Source code for the default VAD is available, as GFE, from the International ICWG Web site (http://198.184.128.72/iicwg) or on disk from NSA.

B.3 Grace Period

The Grace Period is a variable period of silence/background noise that is transmitted after silence is detected and before DTX mode is entered.

The Grace Period shall contain a minimum of two (2) vocoder frames. These vocoder frames shall be uniquely identifiable as silence. The information being transmitted in the Grace Period vocoder frames shall contain vocoder compatible parameters, such that processing these frames through the vocoder does not produce unacceptable noise.

For MELP Blank and Burst, the Grace Period shall be populated with MELP vocoder frames as defined in Table B.3-1 – MELP Comfort Noise Parameter Values. All MELP vocoder parameter values shall be set to zero (0) except msvq[0], gain[1] and sync.
Table B.3-1 MELP Comfort Noise Parameter Values

<table>
<thead>
<tr>
<th>MELP Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>msvq[0] (line spectral frequencies)</td>
<td>* See Note (1)</td>
</tr>
<tr>
<td>msvq[1] (line spectral frequencies)</td>
<td>Set to 0</td>
</tr>
<tr>
<td>msvq[2] (line spectral frequencies)</td>
<td>Set to 0</td>
</tr>
<tr>
<td>msvq[3] (line spectral frequencies)</td>
<td>Set to 0</td>
</tr>
<tr>
<td>fsvq (Fourier magnitudes)</td>
<td>Set to 0</td>
</tr>
<tr>
<td>gain[0] (gain)</td>
<td>Set to 0</td>
</tr>
<tr>
<td>gain[1] (gain)</td>
<td>* See Note (1)</td>
</tr>
<tr>
<td>pitch (pitch – overall voicing)</td>
<td>Set to 0</td>
</tr>
<tr>
<td>bp (bandpass voicing)</td>
<td>Set to 0</td>
</tr>
<tr>
<td>af (aperiodic flag/jitter index)</td>
<td>Set to 0</td>
</tr>
<tr>
<td>sync (sync bit)</td>
<td>Continue Alternations</td>
</tr>
</tbody>
</table>

Notes:
1. The default value shall be the respective parameter value from the previous vocoder frame. It is recommended that msvq[0] and gain[1] values be derived by averaging the respective parameters from some number of previous vocoder frames.

B.4 Blank Period

The Blank Period is defined as a variable amount of time that DTX mode (no voice traffic transmissions) must be executed once it has been entered.

The Blank Period shall have a minimum duration equivalent to “n” vocoder frames as defined in Table B.4-1.

Table B.4-1 Blank Period Values

<table>
<thead>
<tr>
<th>Voice Mode</th>
<th>Blank Period “n”</th>
</tr>
</thead>
<tbody>
<tr>
<td>MELP Blank and Burst</td>
<td>2</td>
</tr>
</tbody>
</table>
B.5 Comfort Noise

Comfort noise is generated so that a user is not annoyed by the disappearance of background noise during periods of silence. It is recommended that comfort noise be generated and provided to the user at the receiver.

For MELP Blank and Burst, the MELP vocoder frame defined in Table B.3-1 shall be used as the comfort noise value. The default comfort noise method shall be to repeat the vocoder frame from the Grace Period at the receiver. It is recommended that the averaged values of these parameters be computed at the transmitter and inserted as the Grace Period frames.

Editor's Note: Generation of comfort noise for GSM is specified in GSM standards 6.12, 6.22 and 6.62.

B.6 Re-Start

Upon detection of voice activity, voice traffic mode shall be re-entered, after fulfilling the minimum Blank Period, by sending a Re-Start message.

For MELP Blank and Burst, the Re-Start message shall be the Sync Management Frame as defined in SCIP-210 Section 3.3.1.1.

Upon the Re-Start of voice traffic, there are three alternative ways to manage the onset of voice activity and associated voice quality issues:

- BUFFER/DELAY initial vocoder frame while sync management frame is sent;
- CLIP initial vocoder frame and substitute sync management frame; and
- Skew Time by comparing several vocoder frames and delete, prior to encryption, the least useful vocoder frame to make room for the Sync Management frame.

For the BUFFER/DELAY option, a maximum delay equivalent to one (1) vocoder frame is permitted.
C.0 PERFORMANCE

C.1 DTX Voice

The Voice Activity Detection algorithm shall provide a Voice Activity Factor (VAF) as defined in SCIP-210 Appendix B, Table B.1-1 – DTX VAF Values.

C.1.1 MELP Blank and Burst

The VAF of ≤ 0.6 shall be measured as the percentage of all frames transmitted, including voice, silence (e.g. during silence detection period) and Grace Period frames, while processing the Government provided test vectors. The test vectors are heli_mp_rh.spd, jeep_ch_vw.spd and off_ch2_vw.spd. These test vectors are available from the International ICWG Web site (http://198.184.128.72/iicwg) or on disk from NSA.