711 HPW/HP Research, Analysis, and Consultation for UAS

5 May 2010

John A. Plaga

Senior Research Aerospace Engineer Human Performance Integration Directorate (HP) 711th Human Performance Wing Air Force Research Laboratory

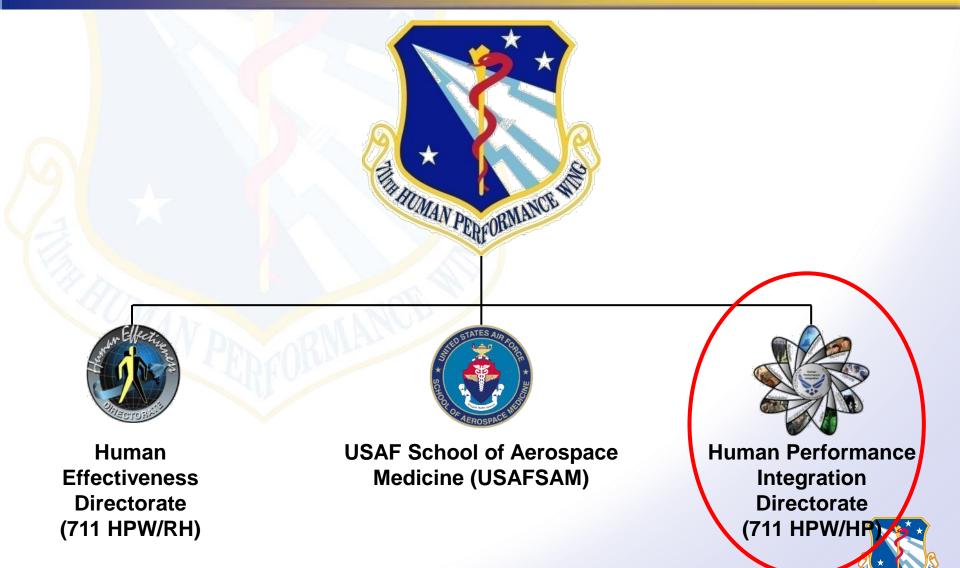
UNCLASSIFIED - FOUO

ORCE RESEARCH LABOR

711 HPW/HP Research, Analysis, and Consultation for UAS 5 May 2010

UNCLASSIFIED - FOUO

ORCE RESEARCH LABOR



- Structure of the 711th Human Performance Wing
 - Human Performance Integration Directorate
- Current HP Projects
- Predator/Reaper SPO Efforts
- HFE/HSI shortfalls
- Way forward

711 HPW Top Level Organization (

711 HPW Mission

711 HPW/RH Mission Leading the Air Force in

Human-Centered Research

711 HPW/HP Mission

Advocate, facilitate and support the application of human systems integration principles to optimize operational capabilities.

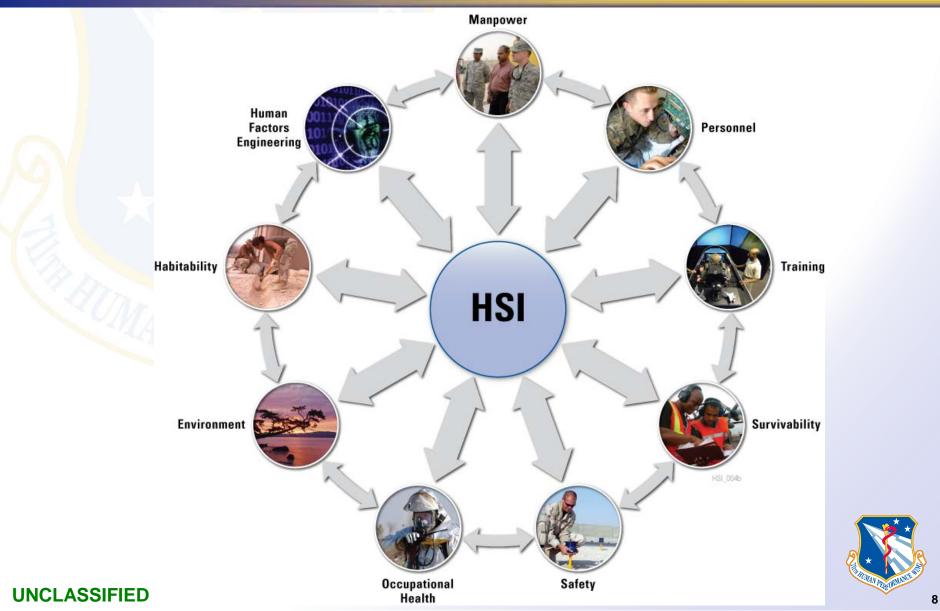
USAFSAM Mission

First-call consultants in Aerospace Medicine, we find solutions to operational needs of today and tomorrow and prepare new aeromedical experts for future global challenges

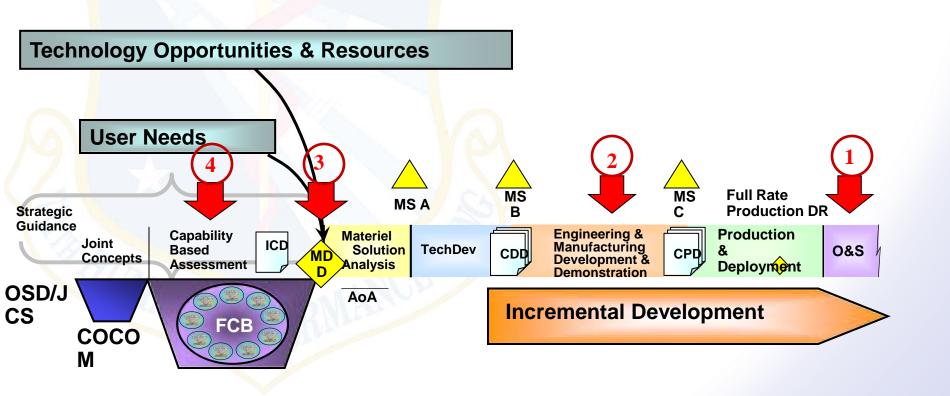
Robust Human Systems Integration for the USAF

- RH Provide Cutting Edge Technology, Data, Methods
- USAFSAM Enhance Human Performance in Adverse Environments
- HP Integrator for 711th and Lead Implementation USAF-Wide

Supports 2004 SAB Report



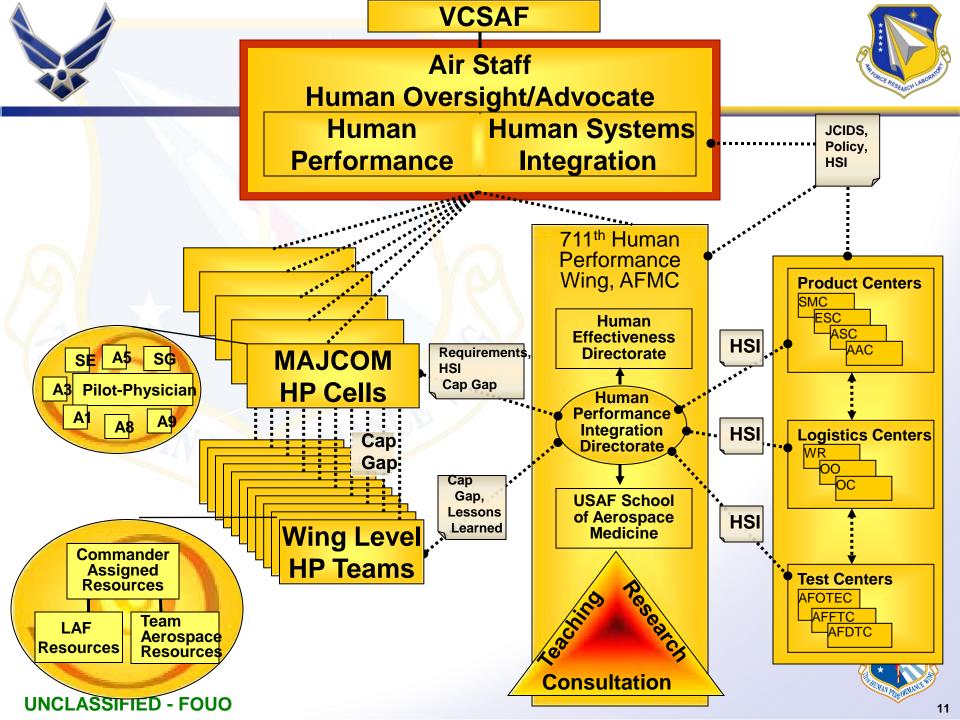
Integrating Human Performance Sustainment, Optimization, and Enhancement through the application of operational knowledge and evidencebased <u>Human Systems Integration</u>

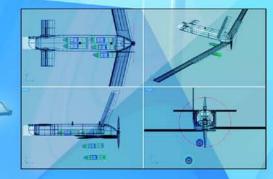


The 9 HSI Domains

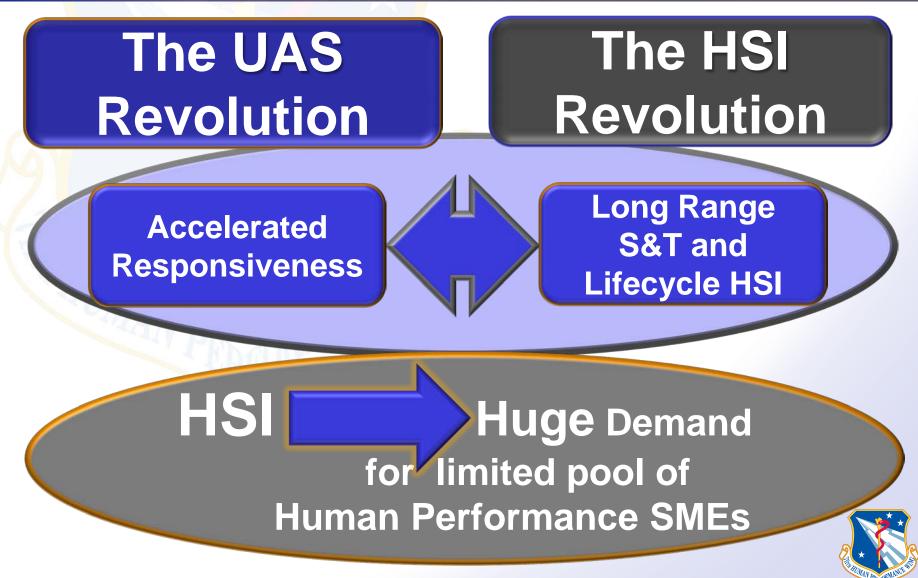
HSI Insertion into the Acquisition Cycle: A "Big Picture" View

- **1** = Fix HSI problems after system is fielded
- 2 = HSI support before and during the system fielding
- **3** = Use HSI as a selection criteria/consideration (and cost)
- 4 = Make HSI part of the trade space to solve the gap/shortfall





- Provide support for JCIDS requirements documents
- Develop process tools to aid HSI process
- Provide Capability Gap analysis
 - Operational deficiencies identified and rectified


Unmanned Aerial Systems

BACKGROUND & SITREP

BACKGROUND & SITREP USAF UAS Need/Requirements

- Everybody is responding to UAS needs <u>RIGHT NOW</u>!
 - OUSD UAS Task Force (ongoing)
 - AF/A2U (USAF UAS Flight Plan)
 - AFRL UAS IPT (ongoing)
 - AFRL MAV Team (initial workshop Aug 09)
 - 711 UAS Wing Team
 - Other government and Industry organizations
- Concurrent planning at several levels can be synergistic, but also confusing
 - UAS Integrator from Plans & Programs (711HPW/XP)
 - Mr. Dan Blaettler (210) 536-8262

UAS Programs Supported

Research Lagonde

- Global Hawk
- Predator
- Reaper
- Sentinel Hawk
- Human Systems Integration Support for the Unmanned Aerial Systems
- MQ-X

HP Research, Analysis, and Consultation – Workload Analysis

- Task Analysis Taxonomy (c. 2001)
- Front End Analysis
 - MQ-1 Sensor Operator (2006)
 - MQ-1 Pilot (2006)
 - MQ-1 Sensor Operator MAC (2008)
- IMPRINT Pro UAS workload modeling
 - UAS maintenance model (MQ-1 and -9)
 - UAS MAC MQ-1 model
 - UAS MAC MQ-9 model
 - Includes mission coordinator

Remotely Operated Vehicle Adaptable Tracking/Training System (ROVATTS)

- Provides an affordable PCbased simulation capability with a reconfigurable architecture
 - Allows development of air-, ground-, or sea-based Unmanned Aerial Systems (UAS) simulations
 - The Predator simulator provides a realistic environment to support United States Air Force (USAF) research, individual/team training, and mission rehearsal applications

- 3 systems purchased by RHA
- 3 systems purchased by NY ANG

Workstation Design Guidelines for Accommodations

- Approach developed 14 model points for Males and 14 model points for Females
- Down-selected to 8 suggested CASES for Predator by removing redundant model points
- The CASES selected are based on workstation design experience and evaluation and attempt to simplify the process
 - All of the model points should be reviewed to determine if any of them pose accommodation issues for specific designs
- 3 Principal Components are identified
 - PC 1 Overall Size
 - PC 2 Contrast of Torso Heights/Limb Lengths
 - PC 3 Contrast of Torso Heights/Thigh Size

PREDATOR CASES: 99% Accommodation of 3 Principal Component Solution

	Females (inches)				Males (in	ches)		
Predator CASE NUMBER	1	2	3	4	5	6	7	8
Matematical Model Point:	W1	W3	W6	W5	M6	M2	M4	M3
Thig <mark>h</mark> Clearance	4.8	5.6	<mark>5.7</mark>	6.4	7.0	5.6	7.4	6.0
Popl <mark>ite</mark> al Height	13.3	16.2	15.0	/ 14.0	17.5	19.0	20.2	17.4
Abdo <mark>men</mark> Depth	8.5	<mark>9.</mark> 8	9. <mark>6</mark>	12.3	11.2	8.4	11.9	9.7
Buttock-Popliteal Length	15.7	19.6	17 <mark>.</mark> 5	18.5	20.0	20.1	22.1	18.1
Acromial Height, Sitting	20.2	19.9	<mark>24</mark> .8	21.4	21.1	23.7	26.6	26.5
Arm Length (Shoulder to Elbow)	10.5	<mark>12.8</mark>	11.8	11.5	13.6	14.3	15.3	13.0
Buttock-Knee Length	19.6	23.9	21.8	23.0	25.0	24.8	27.7	23.2
Elbow Height, Sitting	9.0	6.3	12.2	9.1	6.5	8.4	10.1	12.4
Eye Height, Sitting	27.2	27.5	32.2	28.4	29.1	32.3	35.3	34.7
Hip Breadth, Sitting	13.3	15.1	15.9	17.8	14.6	13.0	16.8	14.4
Knee Height, Sitting	17.1	20.7	19.5	19.0	22.3	23.2	25.5	21.8
Shoulder Breadth	15.0	16.3	16.8	17.5	19.5	17.4	21.2	18.8
Thigh Circumference Max Sitting	19.6	22.2	23.6	26.8	24.3	19.8	26.7	22.2
Thumb Tip Reach	25.3	29.8	28.1	27.9	32.5	33.2	36.2	31.2

UAS Operator Selection/ Performance Improvement Study

- Current: Build on existing research selection & training effectiveness
 - Assess applicants & provide medical & neuropsych recommendations
 - Collect and compare performance data
 - Traditional UAS crewmembers (cross-trained)
 - 1st Beta Test (Nov 08); 2nd Beta Test (Mar 09)
 - SUPT (Feb 09)
 - **Define Mission Essential Competencies (Jun 09)**
 - Assess IQT performance of various selection groups (Oct 09)
- Way Ahead:
 - Refine UAS operator selection tools (Jun 10)
 - Develop LVC applications for future training/assessment (Jul 10)

ROI: Reduced attrition, improved retention, increased performance = more time on target

- FAST/Flyawake fatigue analysis of UAS operators at Houston ANG
 - Anticipate extending this to the other ANG units
- Assisting USAFSAM with a large multi-base fatigue/stress survey of UAS operators
- Head/Eye tracking study in UAS GCS
 - Incorporate SSEV model into IMPRINT
 - Pre-planning phase

703 AESG Vision & Mission

<u>VISION</u>

Enabling kill chain dominance through decisive UAS solutions ...on time, on cost

MISSION

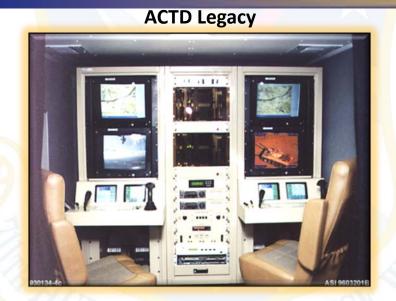
Arm the warfighter with timely UAS solutions through a high performance team executing acquisition excellence in all we do

- Most efforts focused on Ground Control Station
- Most efforts relate to HFE domain
- Informal consultation as needed
 - Crew station accommodations design
 - GCS Seat Redesign
 - Consultation on evaluation methods
- Developing MOA with 703rd to formalize efforts
 - Human Systems Integration Plan
 - Human Readiness Level activity list development
- Grow beyond GCS & HFE
 - Other HSI domains

703rd HFE Related Efforts

Evolution Through Human Factors Engineering

Evolution of Ground Control Stations



Block 15

Block 50 Advanced Cockpit (2012)

Block 30 (2010; shown with Phase 2 SW in 2012)

GCS Production and Retrofit Current and Near Future

Block 15 (Current)

Improved Displays, LinuxCLAMP HWSeat ReplacementPPDL KitDNET HWMulti-port payload extenderIntegrated Sensor Control
Suite HWSTORM console, rudder
pedalsHD/SAR Dissemination HWUpgrade all computers to
common config (710)

Block 30 (2011)

Ground Control Station (GCS) Crewstation Seat Replacement

Description:

Replace CGS crewstation seat for both pilot and sensor operator. The seat was previously demonstrated under the Advanced Cockpit Increment 2 Program. • Purpose:

Increase the usability, comfort, and safety of the GCS crewstation seat. 99% of crew population is targeted. 245 seat kits will be delivered.

SAMPLE

Program Schedule

Event	FY09	FY10	FY11	FY12	FY13	FY14	FY15
Contract Award							
Usability Testing		Already been completed					
Acceptance Testing							
Production Delivery							

IOC: July 2010 FOC: 1QFY11

STORM: Safety, Technical, Operational, Reliability, and Maintenance

Description:

Replace the two legacy Command and Status screens with a console that contains one touch screen Command and Status, HOTAS, and keyboard. • Purpose:

Increase the usability and comfort by giving the pilot and sensor operator easier access to the Command and Status and HOTAS. Allows the other displays to be moved down.

Program Schedule

Event	FY09	FY10	FY11	FY12	FY13	FY14	FY15
Contract Award							
Usability Testing		Already been completed					
Acceptance Testing							
Production Delivery							

IOC: Oct 2010 FOC: 4QFY12

Rudder Petals

Description:

Replace pilot and sensor operator Rudder Petals with adjustable Rudder Petals. • Purpose:

Increase the usability and comfort of the GCS workstation. Helps to accommodate larger population of crewmembers.

Program Schedule

	Ì	i i		Ì	1	1	1
Event	FY09	FY10	FY11	FY12	FY13	FY14	FY15
Contract Award							
Usability Testing		Already been completed					
Acceptance Testing							
Production Delivery							

IOC: Oct 2010 FOC: 40FY12

Upgrade HOTAS: Hands on Throttle and Stick

- Description: Throttle used for take-off and Landing.
- Purpose:

Increase the pilots ability to fly the aircraft mainly during take-off and landing. Increase comfort and grip.

Program Schedule

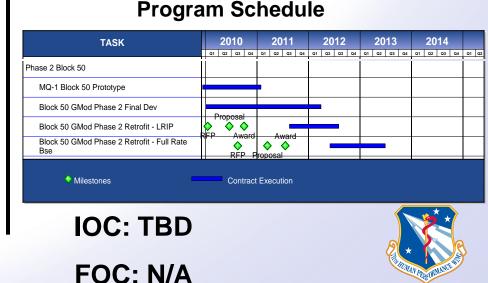
Event	FY09	FY10	FY11	FY12	FY13	FY14	FY15
Contract Award							
Usability Testing		Already been completed					
Acceptance Testing							
Production Delivery							

IOC: Oct 2010 FOC: 40FY12

• Description:

Ergonomic Display Assembly and Console (EDAC)

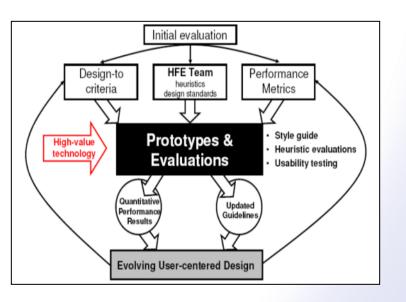
I • Purpose:

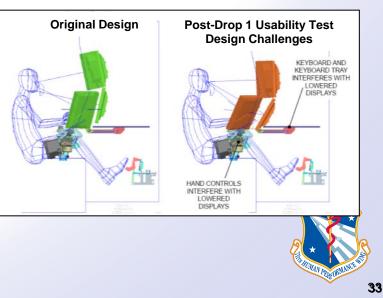

Increase the ergonomics, usability, comfort, and safety of the GCS. Optimize reach to touch-screens. Move towards open systems architecture and maximized commonality.

Frame with improved displays. Upgraded

software architecture that is moving

towards open systems architecture.


Usability Assessments



Task scenarios/vignettes

- Daily use common tasks
- Necessary use infrequent but critical tasks
- Cognitive walkthroughs with users
 - Utilize scenarios, vignettes, prototype
- Target assessment of high-value technology
- Two formal assessments completed
 - Significant feedback obtained

Usability Test Questions 9 Pilots asked during formal usability process (1-5; the higher the number the more comfortable)	EDAC Workstatio n Mean
Overall, how would you describe the ENTIRE workstation environment?	4.78

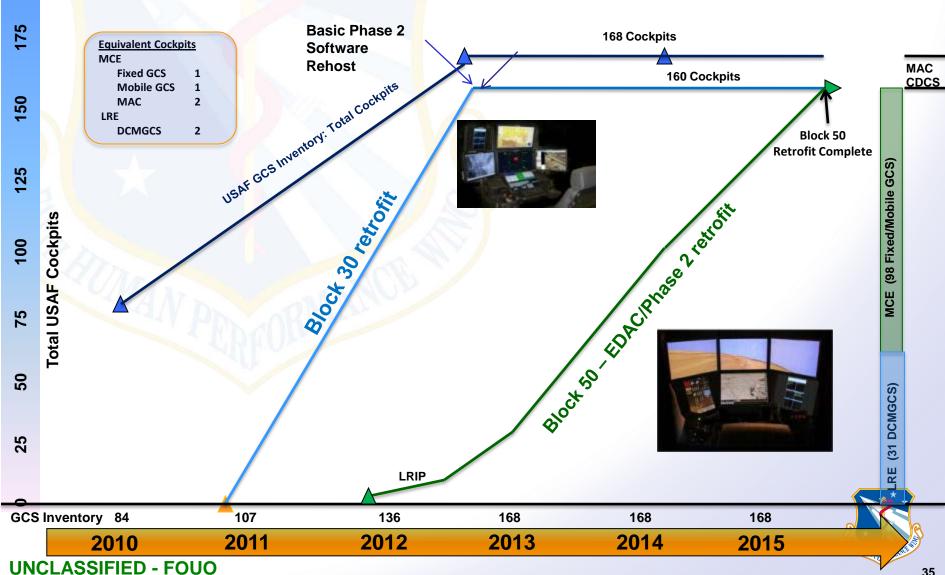
Multi-Aircraft Control (MAC)

Description:

Allow one pilot to fly multiple aircraft during different types of operations, including transit ops, benign ops, and dynamic ops. Purpose: Decrease the number of personnel needed to meet the CAPs requirements.

Program Schedule

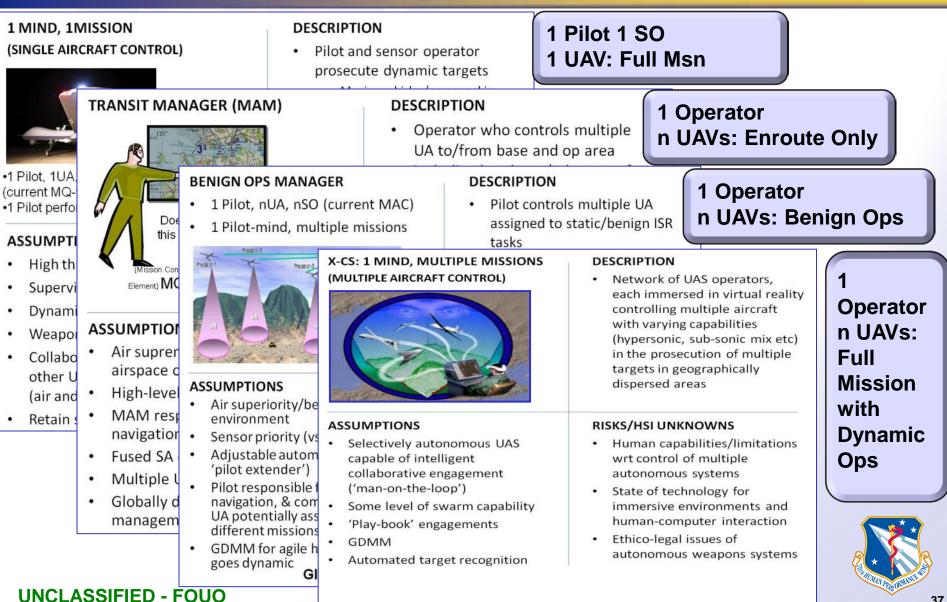
Legacy MAC prototype fielded (8001) -Intended as Tactical Mission Manager & Benign ISR Manager -MQ-1 only -Quick-reaction capability; 9


months

Updated Legacy MAC in development (8002)

-Field Aug 2010; minor updates -MQ-1 only

GCS Modernization Roadmap



- Training is vital to improving warfighter effectiveness
- Efforts to improve concurrency working
- Every new capability requires training upgrade
 - Must institutionalize into core program processes
 - ROMs, schedules, software development practices
- 703 AESG will continue to manage system-wide priorities with user community
- Continuous improvement required to reduce PMATS impacts
 - Process and technical
 - Monthly 703d/677th/GA-ASI/L3 tag up

The Multiple Aircraft Control (MAC) Challenge

- What will pilot reduction rate can REALLY be achieved?
 - What areas of mission profile allow MAC?
 - Optimization of RPAs versus pilots
 - Handoff issues time to get SA
- What effect will this have on the MPT issues
 - Greater skill levels for MAC operation
 - Longer training, fewer available applicants
 - Greater stress, lower retention
- Technologies required for effective MAC
 - Automation

- The UAS challenge is being addressed, has many planners and is resource-limited
- Must continue to identify R&D and other support efforts relating to UAS
 - Keep abreast of ongoing UAS work
 - Avoid duplication
 - Develop collaborations
 - Create symbiotic efforts
 - Extract necessary information that can be used for Acquisitions
 - Design Guidelines
 - Evaluation Criteria

HP UAS Related Publications

- U.S. Military Unmanned Aerial Vehicle Mishaps: Assessment of the Role of Human Factors Using Human Factors Analysis and Classification System (HFACS), HSW-PE-BR-TR-2005-0001
- Effects of Shift Work and Sustained Operations: Operator Performance in Remotely Piloted Aircraft (OP-REPAIR), HSW-PE-BR-TR-2006-0001
- The Development of Empirically based Medical Standards for Large and Weaponized Unmanned Aircraft System Pilots, HSW-PE-BR-TR-2006-0004
- Human Factors Considerations in Migration of Unmanned Aircraft System (UAS)
 Operator Control, HSW-PE-BR-TR-2006-0002

http://www.wpafb.af.mil/afrl/711hpw/hpi.asp

Questions?

John A. Plaga

john.plaga@wpafb.af.mil

711HPW/HP 937-255-1166